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Abstract

Developmental programming literature in microbiology emphasizes that much of the process of
health development throughout life is determined at the early stage of life by the early childhood
epigenetic factors comprising internal and external environments, health care use, and health related
behavior, together with the genetic factors. This paper introduces and empirically estimates a statis-
tical multi-state time-to-event life history model of incidence of chronic diseases, disability and death
at mid-ages, incorporating childhood factors and health behaviors. Many of the factors at the cellular
level are unobserved or imperfectly instrumented with observed data, which causes biased estimates
of the coefficients of included regressors. This paper corrects for unobserved heterogeneity biases, ex-
tending statistical techniques from the generally studied two-state models to the multi-state model of
this paper. The paper uses the HRS (Health and Retirement Studies) dataset and takes the definition of
disability as a health status that qualifyies for the Social Security’s DI (Disability Insurance) program
or the SSI (Supplemental Security Income) program. The paper studies how various childhood factors
and health behaviors are associated with probabilities of following various transition paths through
the health states of normal health, illness with one-or-more chronic diseases, disability and death. The
paper also carries out quantitative policy analysis of social policies, improving the childhood factors
of various social groups on their probabilities of maintaining good health, encountering disability or
death in mid-ages.
Short summary: The paper studies how the early childhood factors and health behaviors are related
to incidence of chronic diseases, disability or death in mid-ages in a statistical multi-state time-to-
events life history model.
JEL Classifications: I12, C41, C51.
Keywords: Pathways to disability, OASDI, SSI, multistate time-to-event model, mortality, aging.
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1 Introduction

Identification of factors that determine disability and mortality incidence rates is important for disability

programs such as Social Security Disability Insurance (DI) and the Supplemental Security Income (SSI)

programs. According to the biology of living organisms, all individuals succumb to aging, and experi-

ence diseases and disabilities of various kinds as they age. Diseases and disabilities can also be caused

by injuries, genetic abnormalities and epigenetic reprogramming (epigenetic includes environmental fac-

tors and health-related individual behaviors). Some individuals stay in good health for a long period of

time and then become disabled or die; some develop one or more chronic diseases such as diabetes, can-

cer, vascular, musculoskeletal, cognitive and mental disorders that expedite incidence of disability and

death. I use the Health and Retirement Study (HRS) data to estimate a dynamic multi-state time-to-event

econometric model of pathways to disability or to death before disability through various health states—

specifically, normal health and one-or-more chronic diseases—before reaching age 65 for individuals in

their early 50’s. Genetic and environmental factors, health care use, health related behaviors and cognitive

factors determine the progression of unobserved stock of internal health (also known as health-capital in

economics, and frailty in gerontology). The state of internal health determines the risks of transitions to

other health states and their transit times. I estimate the effects of these factors on the probabilities of

transitions and the transit times along the pathways that individuals in their 50’s follow before reaching
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age 65.

Before exploring pathways to disability, it is important to clarify the definition of disability that I study

in this paper The definition of disability depends on the purpose of its use. Disability is a multidimen-

sional concept and is defined in the literature using simple descriptions, conceptual models, classification

schemes, and measurement methods (for details, see Hahn (1985);Marks (1997);Altman (2001);Albrecht

and Verbrugge (2003);Marks (1997);Altman (2001);Snyder et al. (2008)). I use the following statutory defi-

nition of disability that the Social Security Administration use for the DI and SSI programs (specified in

the Social Security Act, Title II, § 223(d), paragraph (1)A):

“inability to engage in any substantial gainful activity by reason of any medically deter-

minable physical or mental impairment which can be expected to result in death or which

has lasted or can be expected to last for a continuous period of not less than 12 months”

and with a vocational grid addendum stated in paragraph (2)A,

“An individual shall be determined to be under a disability only if his physical or mental

impairment or impairments are of such severity that he is not only unable to do his previ-

ous work but cannot, considering his age, education, and work experience, engage in any

other kind of substantial gainful work which exists in the national economy, regardless of

whether such work exists in the immediate area in which he lives, or whether a specific job

vacancy exists for him, or whether he would be hired if he applied for work. For purposes of

the preceding sentence (with respect to any individual), “work which exists in the national

economy” means work which exists in significant numbers either in the region where such

individual lives or in several regions of the country.”

The definition of disability for the SSI program is almost identical.1

While a lot has been said about the definition of disability, very few papers provide a biological or a

behavioral mechanism of disablement process from which policy implications for clinical practice and

health care policy can be derived. The first disablement model was introduced by the sociologist Nagi

(1965), which he further refined in (Nagi, 1976; Nagi, 1991). This model was extended by (Verbrugge

and Jette, 1994; Verbrugge, Latham, et al., 2017) who added biological, environmental and behavioral risk

factors affecting all four stages of the disablement process.2 Disablement models are conceptual schemes

1For details, see https://www.ssa.gov/OP_Home/ssact/title02/0223.htm section 223(d)(2) for the OASDI program, and
https://www.ssa.gov/OP_Home/ssact/title16b/1614.htm paragraph 3(A) for the SSI program.

2Nagi model has been adapted by the World Health Organization in their classification scheme of disability, the latest one is
World Health Organization (2001). See Bedirhan et al. (2010) for an application of the above disablement models in WHO’s 2001
classification system, and see (Pope and Tarlov, 1991; Institute of Medicine, 2007) for more on this.
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that describe four distinct but related stages to arrive at a disability: starting from a pathology, leading

to developments of impairments of body systems, then to functional limitations and finally to disability.

I briefly describe these stages below.

Pathology is an interruption of the normal physiological process caused by developmental disorders (such

as cerebral palsy, seizure disorders, mental retardation, hearing and vision impairments, autism, PKU,

Huntington disease), infection, injury, trauma, metabolic imbalance (such as diabetes), degenerative dis-

ease processes (i.e., deterioration over time the functioning or the structure of tissues or organs leading to

osteoarthritis, osteoporosis, cancer, Alzheimer or Parkinson’s disease) or any other disease process. The

impairments of body system involve loss or abnormality of an anatomical, physiological, mental, or emo-

tional nature. Functional limitations include not being able to have one’s ADL (activities of daily living)

and IADL (instrumental activities of daily living), role activities (such as occupation, parenting, grand-

parenting, and student roles), social activities (such as attending church and other group activities, and

socializing with friends and relatives) and leisure activities (such as sports and physical recreations, read-

ing, and distinct trips). The final stage is the disability, the definition of which depends on the purpose

of the study and involves a combination of all the above models of disability.

The disablement models are useful for conceptualization, diagnosis and record keeping of disabilities but

limited for the study of the causes of disability in epidemiological and policy research. The starting point

of the above disablement models is an onset of a chronic disease or an injury causing a disability. For

policy research on disability and mortality, it is important to study the biomedical processes modulated

by genetic, epigenetic and behavioral factors in the manifestation and prognosis of disabling diseases

and on the risk of disabling injuries. While an injury as the starting point of disablement process serves

well for certain purpose such as for workers’ compensation in sports, construction and factories, a large

proportion of disabilities in themid ages are caused by diseases–both physical andmental (see for instance,

Case and Deaton (2015);The US Burden of Disease Collaborators (2018)). Mechanism for non-accidental

death is similar. Diseases, leading to disabilities — both developmental disabilities and late age disabilities

— and to mortality are the result of modulated biomedical processes, which at the microbiology level are

the outcomes of cellular aging. While aging, an individual succumbs to diseases and injuries leading to

disability or death. Not all individuals experience the same deterministic aging process—some experience

faster aging and aging related diseases than others. Why do people experience faster aging, diseases and

mortality? At what stage of life, does it all begin—at mid-ages, at birth, or even earlier at conception? How

do various genetic, epigenetic and behavioral factors modulate the aging process, culminating in diseases,

disabilities and death? What biomarkers and epigenetic factors (including environmental factors and

individual health related behaviors) predict better the process of aging and incidence of disease, disability

5



and death over the lifespan?

I will not get into the details of the biomedical literature on these issues. Similar to the literature of

behavioral genetics of personality and intelligence, the nature-nurture controversy exists in the health

literature: Is it all nature (i.e., all genetics or genome) or is it all nurture (i.e., all epigenetics or epigenome

modulated by the environment and health related individual behaviors) that determines the progression

of health over the life span of an individual? The consensus so far is that it is neither the nature nor the

nurture; it is a combination of the two that determines health developments over one’s life span. The

research so far found that certain genetic make-ups (i.e., certain sequences of DNA) predispose one to

certain diseases, (see for instance, Barondes (1999);Khoury et al. (2009);Bookman et al. (2011)), but the

epigenetic inputs—especially at the very early stage of life, i.e. in the womb, but not the least at later

stages of life—are also very important determinants of life expectancy and quality of life. The biomedical

research so far has not found genes that are responsible for aging and age related diseases, leading to early

disability and mortality. The twenty-first century biomedical research emphasizes more on the epigenetic

factors than the genetic factors to explain the pattern of health developments over the life-span.

At the cellular level, aging means cellular senescence—i.e., after a certain number of cell divisions, it

stops dividing or have defective replications, causing tissues or organs to increasingly deteriorate over

time. Senescence leads to incidence of degenerative diseases. It is generally observed that women live

longer than men and those with better life styles in terms of smoking, exercising and diets delay the aging

process (for evidence, see Blair et al. (1989);Vaupel (2010);Austad and Fischer (2016);Zarulli et al. (2018)).

This line of biological inquiry led to explore the (cellular) molecular mechanism of aging process and to

find biomarkers of aging that can be used to diagnose, monitor, and improve the age related physiological

decline and disease. A good indicator of the aging process at the cellular level is the rate of decay in the

telomere length. Telomeres are the caps at the end of chromosomes in a DNA sequence. They look like

the plastic caps at the end of shoelaces. The main function of telomeres is to protect cells preserving

the genetic content within each chromosome during cell divisions. Unfortunately, the telomere length

shortens in the course of each cycle of chromosomal replication during cell division, reaching the Hayflick

limit (about 40 to 60 cell divisions, Hayflick (1965)) with a critically short telomere length, after which

the cells stop dividing or divide with chromosomal abnormalities. The rate of shortening of the telomere

length ismodulated by telomerase enzyme. Why the rate of decay in telomere length varies for individuals

is an active area of biomedical research and the mechanism for it is not yet fully understood. Many studies

find that higher stress of any kind— psychological, financial, social and chemical—is strongly associated

with higher oxidative stress, lower level of telomerase enzyme, and shorter telomere length. Furthermore,

shorter telomere length is associated with health related phenotypes of poorer health and higher risks for
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cardiovascular and immune diseases (see, Epel et al. (2004);Shalev, Entringer, et al. (2013);DiLoreto and

Murphy (2015);Shalev and Belsky (2016);Simons et al. (2016)).

More recently emerged second line of biomedical research on aging and aging related diseases explores

the epigenetic (which literally means on top of genetic) mechanism for these life-cycle processes. (See

for instance, Alisch et al. (2012);Barres and Zierath (2011);Boks et al. (2009);Esteller (2008);Hannum et al.

(2013);Horvath (2013)).

The above literature emphasizes that aging and age related diseases are associated with shortening of

telomere length and changes in global methylation, and that stress, smoking, drinking, chemical misuse,

and diet are important modulators for these changes. The question remains, what are the critical periods

or the developmental milestones in life cycle that program the motions of health developments over the

life span of an individual?

Research along this line began with the striking findings of (Barker, 1990; Barker, 1998) and later of

Gluckman et al. (2008). They found strong associations between birth weight and many later life chronic

diseases, including hypertension, coronary artery diseases, type 2 diabetes, and osteoporosis. Many other

studies find that much of health developments in later life is determined very early in life—specifically

during the prenatal period, right after conception, i.e. in the womb. Sometimes it is said in social sciences

that inequality begins in thewomb. The effect of an environmental stress in thewomb on later life diseases

and developmental outcomes is known as developmental programming. Gluckman et al. (2008) observes

that “like the long latency period between an environmental trigger and the onset of certain cancers,

the etiology of many later life diseases such as cardiovascular disease, metabolic disease, or osteoporosis

originate as early as in the intrauterine development and the influence of environments that created by

the mother.’ ’ For more empirical evidence on the developmental origin of later life diseases, see (Barker,

2007; Thornburg et al., 2010). The papers by (Kanherkar et al., 2014; Barbara et al., 2017) provide detailed

descriptions of the biological process of development of life and health, starting from the conception.

They explain how the global DNA demethylation of the fertilized egg right after conception creates an

epigenetic “clean slate” to start a new life, followed by rapid remythylation to reprogram the maternal

and paternal genomes to create epigenetic configurations in the fetus which rapidly produce specialized

cells of the body with cell divisions. The environment provided in mother’s womb during those times

has long-term effects on the child’s later cognitive and other health developments. While inputs at early

milestone ages are important for later age health, healthy living and good healthcare are still important

for maintaining health in mid ages.

Studies in social sciences find that low socio-economic status (SES) is associated with inflammation,
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metabolic dysregulation, and various chronic and age-related diseases such as type 2 diabetes, coronary

heart disease, stroke, and dementia, and that low SES create epigenetic changes in individuals that lead to

faster biological aging even after controlling for health-related behaviors such as diet, exercise, smoking,

drugs & alcohol, or having health insurance, see for evidence, Simons et al. (2016). The study by Karakus

and Patton (2011) uses the Health and Retirement Studies data and after controlling for education, race,

income, health risk indicators like BMI and smoking, functional limitations like gross motor index, health

limitations for work, and income, they find depression at baseline leads to significantly higher risk for

developing diabetes, heart problems, and arthritis and no significant effect on developing cancer during

the 12 years follow-up period. Renna (2008) uses National Longitudinal Survey of Youth data to find no

significant effect of alchohol use on labor market outcomes such as on earnings or hours of work. Seib

et al. (2014) collected data on a sample of older women in Australia and found that severe traumatic life

events create strong stress levels that influence them to have unhealthy living and diet measured by BMI

and develop stronger and earlier health problems. Conti et al. (2009) utilize the CES-D data in the Health

and Retirement Survey dataset to construct a measure of depression, and find that depression of men

and women have significant negative effect on employment status, early retirement, and application for

DI/SSI benefits. More recently, Case and Deaton (2015) found a racial reversal in the mortality rates of

the US mid-age population between 1993 and 2013. They found that all-cause mortality and morbidity

of non-Hispanic white men and women of ages 45-55 have been increasing during the period, mainly

due to increases in their incidence rates of drug and alcohol poisoning, suicide, chronic liver diseases and

cirrhosis. Morbidity of the group culminate into serious disabilities and crowding into DI and SSI rolls

and to lower labor force participation rates, especially among women. Such time reversals are confined to

that age and racial group only, and the rates are higher for less educated than educated groups. They at-

tribute such behavioral changes to increased (within and inter-generational) income inequality and rises

in prescription of pain killer drugs and opioid, and falling price and easier availability of heroin.

I introduce a statistical multi-state time-to-event life history model of incidence of chronic diseases, dis-

ability and death at mid-ages, incorporating childhood factors and health behaviors. Many factors at the

cellular level are unobserved or imperfectly instrumented with observed data which causes biases in the

parameter estimates of included regressors. I correct for unobserved heterogeneity biases extending some

of the statistical techniques from the literature on generally studied two-state models to the multi-state

model of this paper.

The rest of the paper is organized as follows. In Section 2, I provide an extended disablement model

of this paper.In Section 3, I describe the subset of the Health and Retirement Survey dataset that I use

for this study. In Section 4, I describe the econometric specification, estimation issues. In Section 5, I

8



present the estimates and discuss the results. In Section 6, I analyze the quantitative effects of social

policies improving the childhood factors for various social groups on their probabilities of maintaining

good health and incidence of disability or mortality. Section 7 concludes the paper.

2 The Model

With insights from the disablement modeling literature of (Nagi, 1965; Verbrugge and Jette, 1994; Ver-

brugge, Latham, et al., 2017) and the biomedical literature on the aging process, I formulate and then

estimate an econometric model of paths to enter disability rolls. An individual can be on the disability

rolls if the individual has a qualifying disability before reaching age 65 and has not died before applying

for disability benefits. I assume that an individual’s getting on the disability rolls is a terminal event, i.e.,

the individual does not move to normal or diseased health states. After reaching this state, the individual

is not followed any further. A competing risk for getting on the rolls is death before age 65. This is a

competing risk because an individual cannot be at risk for disability enrollment if the individual is already

dead and thus not at risk to get on the disability rolls. The individual is not followed after the event of

enrollment onto the disability program as this is the event of interest in this paper and the assumption

that once in disability, individual does does not recover. In the technical terms defined below, we treat

the health states—disability and death—as absorbing states, i.e., once in that health state, an individual

remains in that health state and removed from the sample for later considerations. An individual can be

in normal health and then become disable or die before becoming disabled or may first become diseased

with one or more diseases and again from that health state become disabled or die before becoming dis-

abled. Various factors affect individual risks of various transitions of health states and the time they stay

in each health state along the life-span. Both, in turn, determine the timing of getting on to the disability

rolls.

An individual at any time along the path to disability or to death before age 65 will be in the normal health

state for a length of time, and then moves to another health state, say diseased health state, and remain

there for some time, and then jump to the health state of disability or to death, or reach 65 and censored

after that. There are many possible paths that an individual can follow. Even when the health states they

pass through are the same, the duration of stay in each health state (also known as the waiting time in

stochastic process literature) could vary. Each configuration of visited states and the waiting times in

those states constitute one path. When time is continuous, the number of paths that one can follow is

infinite. For an individual one path maybe more likely than another and may depend on the individual’s

genetic and prior health related behaviors. From the diagram below one can see various paths that an

individual may follow during the study period. The focus of the paper is to study the probabilities of
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various transitions and the duration of stay in each health state.

I model the paths through various health states that individuals follow along their life-spans as a

continuous-time finite-state Markov process 𝑋(𝑡), 𝑡 ∈ 𝑇 , where at each time point 𝑡 during the study

period 𝑇 , the random variable 𝑋(𝑡) takes a value from a finite set 𝑆 of health states. In the present study,

I take 𝑇 = [0, 14], treating age 51 as time period 𝑡 = 0 and age 65 as time period 𝑡 = 14. The state space 𝑆
of the stochastic process contains health states 1 = “healthy or normal health”, 2 = “ill with one or more

chronic disease”, 3 = “disabled with DI-or SSI-qualifying disability” and 4 = “Death”. Sometimes I will

use 𝑆 = {ℎ, 𝑖, 𝑑, 𝐷} in place of {1, 2, 3, 4}.

Let the transition probabilities of our stochastic process 𝑋 (𝑡) be given by

𝑃ℎ𝑗(𝑠, 𝑡) = 𝑃𝑟𝑜𝑏(𝑋(𝑡) = 𝑗 ∣ 𝑋 (𝑠) = ℎ), (1)

for all ℎ, 𝑗 ∈ 𝑆, 𝑠, 𝑡 ∈ 𝑇 , 𝑡 ≥ 𝑠. Denote the matrix of transition probabilities by

𝑃 (𝑠, 𝑡) ≡ (𝑃ℎ𝑗(𝑠, 𝑡))ℎ,𝑗=1...4 .

An individual at time 𝑡 may be in any of the health states in 𝑆, the probability of which, known as the

occupation probability. The occupation probability at time 𝑡 can be viewed as the proportion of population

of age 𝑡 who are in health state 𝑗. Let 𝜋𝑗(𝑡) be the occupation probability of an individual in health state

𝑗 at time 𝑡 . Denote all the occupation probabilities as a column vector 𝜋(𝑡) ≡ ((𝜋𝑗)(𝑡), 𝑗 ∈ 𝑆). Then the

occupation probabilities move over time recursively as follows,

𝜋(𝑡) = 𝜋 ′(𝑠)𝑃(𝑠, 𝑡), 0 ≤ 𝑠 < 𝑡.

Note that given an initial distribution 𝜋(0) and the transition probabilities (𝑃ℎ𝑗(𝑠, 𝑡), 0 ≤ 𝑠 < 𝑡, 𝑠, 𝑡 ∈ 𝑇 ), we

can calculate the occupation probabilities in all periods in 𝑇 from the above recursive equation.

The following path diagram describes various pathways that individuals may go through in their mid-

ages.

It is known that the transition probability process of the stochastic process satisfies Chapman-Kolmogorov

equation

𝑃 (𝑠, 𝑡) = 𝑃 (𝑠, 𝑢) ⋅ 𝑃 (𝑢, 𝑡) , for all 𝑠, 𝑢, 𝑡 ∈ 𝑇 with 𝑠 < 𝑢 < 𝑡 (2)

I assume that the transition probabilities 𝑃 (𝑠, 𝑡) are absolutely continuous in 𝑠 and 𝑡 .A transition intensity—

also known as the hazard rate in the survival analysis literature when there is only one event of interest,
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Figure 1: Path diagram of health trajectors.

and as the cause-specific hazard rate in the competing risk analysis3—of the health process 𝑋𝑡 from health

state ℎ to health state 𝑗 at time 𝑡 is the derivative

𝜆ℎ𝑗(𝑡) = limΔ𝑡→0
𝑃ℎ𝑗(𝑡, 𝑡 + Δ𝑡) − 𝑃ℎ𝑗 (𝑡, 𝑡)

Δ𝑡 , for 𝑗 ∈ 𝑆

= limΔ𝑡→0
𝑃ℎ𝑗(𝑡, 𝑡 + Δ𝑡)

Δ𝑡 , for 𝑗 ≠ ℎ

𝜆ℎℎ(𝑡) = limΔ𝑡→0
𝑃ℎℎ(𝑡, 𝑡 + Δ𝑡) − 1

Δ𝑡 , for 𝑗 = ℎ,

= − limΔ𝑡→0
∑𝑗≠ℎ 𝑃ℎ𝑗(𝑡, 𝑡 + Δ𝑡)

Δ𝑡
= −∑

𝑗≠ℎ
𝜆ℎ𝑗 (𝑡)

For absorbing states ℎ = 3, 4, the transition intensities 𝜆ℎ𝑗(𝑡) = 0 , for all 𝑗, 𝑗 ∈ 𝑆. Denote the matrix of

transition intensities by

Γ (𝑡) =
⎛
⎜
⎜
⎝

− (𝜆12 (𝑡) + 𝜆13 (𝑡) + 𝜆14 (𝑡)) 𝜆12 (𝑡) 𝜆13 (𝑡) 𝜆14 (𝑡)
0 − (𝜆23 (𝑡) + 𝜆24 (𝑡)) 𝜆23 (𝑡) 𝜆24 (𝑡)
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎠
. (3)

While 𝑃ℎ𝑗(𝑠, 𝑡) is an unconditional probability, the transition intensity or the hazard rate 𝜆ℎ𝑗(𝑡)Δ𝑡 is the

conditional (instantaneous) probability of an individual experiencing the event 𝑗 in the small time interval

[𝑡, 𝑡 + Δ𝑡) given that he has been in state ℎ at time 𝑡 . This conditional probability may depend on time 𝑡
3See for instance, Raut (2017) for a competing risk analysis in a similar context using the SSA Administrative data and

compare that with the present framework.
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and other characteristics and the path through various health states that is followed by the individual to

be in the health state ℎ at time 𝑡 . I am assuming that the process is Markovian, i.e., it depends only on

the health state ℎ that it is in at time 𝑠, and on the times 𝑠 and 𝑡 , but does not depend on the path that

he followed to come to state ℎ at time 𝑠. Or in other words, the future health condition depends on the

current health condition but not how one came to the current health state.

It can be shown that the Chapman-Kolmogorov equation leads to the following Kolmogorov forward

equation
𝜕𝑃 (𝑠, 𝑡)

𝜕𝑡 = 𝑃 (𝑠, 𝑡) ⋅ Γ (𝑡) (4)

and the initial condition 𝑃 (𝑠, 𝑠) = 𝐼 for all 𝑠 ∈ 𝑇 . Thus, given intensities Γ (𝑡) , the solution 𝑃 (𝑠, 𝑡) of

the above differential equation defines a continuous time Markov chain and conversely, given absolutely

continuous transition probabilities 𝑃 (𝑠, 𝑡) for a continuous time Markov chain, one has the Kolmogorov

forward Eq. (4). For the empirical work, I characterize the Markov chain of pathways through various

health states with the intensity matrix Γ(𝑡) and in our empirical specification, I parameterize Γ (𝑡) as

function of covariates and estimate these using the HRS data set. I then use these estimates of the intensity

matrix to estimate the transition probabilities and study their properties.

From the Fundamental Theorem of ordinary differential equations, we know that there exists a solution

𝑃(𝑠, 𝑡) to the system of ordinary differential equations in Eq. (4). In general, it is not possible to find

analytical solution of the Kolmogorov forward equation. However, given the special structure for the

intensity matrix and the assumption that there is no transition from the diseased health state to normal

health state, and from the disability health state to diseased or normal health states, we can analytically

solve the Kolmogorov forward Eq. (4). The solution derived in the Appendix is as follows:

𝑃11 (𝑠, 𝑡) = exp (−∫
𝑡

𝑠
(𝜆12 (𝑢) + 𝜆13 (𝑢) + 𝜆14 (𝑢)) 𝑑𝑢) (5)

𝑃12 (𝑠, 𝑡) = ∫
𝑡

𝑠
𝑃11 (𝑠, 𝑢) 𝜆12 (𝑢) 𝑃22 (𝑢, 𝑡) 𝑑𝑢 (6)

𝑃13 (𝑠, 𝑡) = ∫
𝑡

𝑠
𝜆13 (𝑢) 𝑃11 (𝑠, 𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
[𝑃11(𝑠, 𝑢)𝜆12(𝑢) ∫

𝑡

𝑢
𝑃22 (𝑢, 𝜏 ) 𝜆23 (𝜏 ) 𝑑𝜏] 𝑑𝑢 (7)

𝑃14 (𝑠, 𝑡) = ∫
𝑡

𝑠
𝜆14 (𝑢) 𝑃11 (𝑠, 𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
[𝑃11(𝑠, 𝑢)𝜆12(𝑢) ∫

𝑡

𝑢
𝑃22 (𝑢, 𝜏 ) 𝜆24 (𝜏 ) 𝑑𝜏] 𝑑𝑢 (8)

𝑃22 (𝑠, 𝑡) = exp (−∫
𝑡

𝑠
(𝜆23 (𝑢) + 𝜆24 (𝑢)) 𝑑𝑢) (9)

𝑃2ℎ (𝑠, 𝑡) = ∫
𝑡

𝑠
𝜆2ℎ (𝑢) 𝑃22 (𝑠, 𝑢) 𝑑𝑢, ℎ = 3, 4 (10)
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The above formulas for the transition probabilities have interesting interpretations. If we view state 1
as “alive” and states 2, 3 and 4 (the states that an individual can move to from state 1) as the competing

causes of death, then by the definition of transition probabilities in Eq. (1), 𝑃11(0, 𝑡) is the probability that

the individual is alive at time 𝑡 , i.e., did not die from any of the competing causes 2, 3 or 4 of death before

age 𝑡 . That is, 𝑃11(0, 𝑡), is nothing but the survival function of the competing risk literature. Denote by

𝜆1(𝑡) = 𝜆12(𝑡) + 𝜆13(𝑡) + 𝜆14(𝑡), the combined risk or the hazard rate of exiting state 1 at time 𝑡 . Then

∫𝑡0 𝜆1 (𝑢) 𝑑𝑢 is the cumulative hazard (also known as the cumulative risk or the integrated hazard) of dying

by time 𝑡 . In 𝑃11(𝑠, 𝑡) the individual begins state 1 at time 𝑠 in stead of at time 0, and is more relevant

in the multi-state models as the individual could be in some other health state before moving to health

state at time 𝑠. In what follows, I will sometimes denote a transition 𝑗 → ℎ by a Greek letter or when

the reference of the from state 𝑗 and the to-state ℎ is important, I will denote it by 𝑗ℎ. Furthermore, I will

often abbreviate a transition probability 𝑃ℎ𝑗(0, 𝑡) as 𝑃ℎ𝑗(𝑡).

The interpretation of the other transition probabilities are slightlymore complex in themulti-state context

as there are multiple pathways to move from one state to another state and not all other states that

one moves to are absorbing states. For instance, the transition probability 𝑃12(𝑠, 𝑡) is by definition the

probability of an individual being in health state 2 (i.e., have one-or-more diseases) at time 𝑡 given that he

was in health state 1 at time 𝑠. The formula for it in Eq. (??) means that for an individual in health state

1 at time 𝑠 to be in health state 2 at time 𝑡 , he has to be in health state 1 up to a time 𝑢, (𝑠 < 𝑢 < 𝑡), the
probability of which is 𝑃11(𝑠, 𝑢), and make an instaneous transition at time 𝑢 (i.e., during [𝑢, 𝑢 + 𝑑𝑢) from
state 1 to state 2, the probability of which is 𝜆12(𝑢)𝑑𝑢 and remain in state 2 during the remaining time 𝑢
through 𝑡 , the probability of which is 𝑃22(𝑢, 𝑡)). Moreover, this transition time 𝑢 takes any of the mutually

exclusive values between 𝑠 to 𝑡 and thus we need to integrate over these mutually exclusive values of 𝑢
between 𝑠 and 𝑡 , which is represented in the formula in Eq. (??).

𝑃13(𝑠, 𝑡), the probability of a person who is in normal health, i.e. in state 1 at time 𝑠 to be on the DI rolls,

i.e., in state 3 at time 𝑡 has two parts—corresponding to the two mutually exclusive paths that can lead

to this: First, he can be in good health state until time 𝑢 (𝑠 < 𝑢 < 𝑡) (the probability of which is 𝑃11(𝑠, 𝑢))
and then transit to the disability health state 3 at time 𝑢 with probability 𝜆13(𝑢)𝑑𝑢. Second, from state 1
at time 𝑠, he moves to state 2 at time 𝑢 (𝑠 < 𝑢 < 𝑡) (the probability of which is 𝑃12(𝑠, 𝑢)) and then transit to

the disability health state 3 at time 𝑢 with probability 𝜆13(𝑢). Once arrived on the on he stays there until

𝑡 with probability 1 (as it is an absorbing state) Since this is true for any value of 𝑢, we integrate over 𝑢 to

get the probability. I denote the probability of the direct path 1 → 3 as 𝑄12(𝑠, 𝑡) and the probability of the

path 1 → 2 → 3 as 𝑄123(𝑠, 𝑡). Similar is the interpretation of the two components for 𝑃14(𝑠, 𝑡) in Eq. (8).

There are various random variables of interest corresponding to the waiting times. Let 𝑇 1 denote the
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duration of time one is in health state 1, 𝑇 3 the time one takes to move to health state 3 starting in good

health state 1 at time 𝑡 = 0. Similarly 𝑇 4 be the time of death starting at health state 1 at time 𝑡 = 0.
What are the waiting time distributions and the expected values of these random variables for different

covariate values?

Suppose one is at normal health at age 50, our base time period, 0, the probability of his becoming disabled

by time 𝑠 directly from normal health, (i.e., not first becoming diseased and then become disabled) will

depend on the competing risks of leaving the normal health state by time 𝑠 either because of death or

because of acquiring one or more diseases. Also note that if he is in good health at time 0, the transition

probability 𝑃13(0, 𝑠), i.e., the probability that he will be in disabled state at time 𝑠 is the sum of likelihood

of all different mutually exclusive time paths.One such path is that he is in good health til time 𝑢, 𝑢 < 𝑠 the
probability of which is 𝑃11(0, 𝑢), and then he instantaneously become disabled at time 𝑢, which has the

instantaneous probability of 𝜆12(𝑢) (the intensity function) and then he remains in disability state from

time 𝑢 to time 𝑠 which has probability 𝑃33(𝑢, 𝑠). But given our assumption that the disability health state

is an absorbing state, 𝑃33(𝑢, 𝑠) = 1. Thus, the probability of following this path is given by 𝑃11(0, 𝑢)𝜆12(𝑢).
From this one can calculate the probability of directly becoming disabled by time 𝑠 from the normal

health at time 0 is ∫𝑠0 𝑃11(0, 𝑢)𝜆13(𝑢)𝑑𝑢, I will denote this direct probability as 𝑄13(0, 𝑠). The other way

he could be in the disability health state by time 𝑠 from the normal health state at time 0 is that he

stays in normal health until time 𝑢, 𝑢 < 𝑠 (the probability of which is 𝑃11(0, 𝑢), then moves to a diseased

state at time 𝑢 with instantaneous probability given by the intensity rate 𝜆12(𝑢) and stays in diseased

state until time 𝜏 , 𝑢 < 𝜏 < 𝑠 the probability of which is 𝑃22(𝑢, 𝜏 ) and become disabled at time 𝜏 with

instantaneous probability given by the intensity function 𝜆23(𝜏 ) and then he remains in the disability

state during the remainder of the time 𝑠 − 𝜏 whose probability is 1 as disability is an absorbing state. Thus

starting from the normal health, the probability 𝑄123(0, 𝑠) of his being in disability state at time 𝑠 via the

disease state is𝑄123(0, 𝑠) = ∫𝑠0 𝑃11(0, 𝑢)𝜆12(𝑢) ∫
𝑠
𝑢 𝑃22(𝑢, 𝜏 )𝜆23(𝜏 )𝑑𝜏𝑑𝑢. Finally, 𝑃13(0, 𝑠) = 𝑄13(0, 𝑠)+𝑄123(0, 𝑠).

The analytical solution that we will get also will have this property for the transition probabilities.

These qualitative properties of our disablement model can be studied from analytical solutions of these

transition probabilities. In general, it is not possible to get analytical solutions. In the next subsection, I

derive it under the assumption that the intensity matrix 𝛼(𝑡) is time constant, i.e., independent of time t.

𝑃13 (0, 𝑡) = ∫
𝑡

0
𝜆23 (𝑢) 𝑃12 (0, 𝑢) 𝑑𝑢

= ∫
𝑡

0
𝜆13 (𝑢) 𝑃11 (0, 𝑢) + ∫

𝑡

0 ∫
𝑢

0
𝑃11 (0, 𝑥) 𝜆12(𝑥)𝑃22 (𝑥, 𝑢) 𝜆23 (𝑢) 𝑑𝑥𝑑𝑢

= 𝑄13 (0, 𝑡) + 𝑄123 (0, 𝑡)
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2.1 Time constant intensity and explicit solution of the transition probabilities

For the time homogeneous case, we can derive explicit formula for the probabilities of getting on to the

disability roll by following paths like 1 → 3 and 1 → 2 → 3 as follows,

𝑄13 (0, 𝑡) =
𝜆13
𝜆1

[1 − exp(−𝜆1𝑡)]

𝑄123 (0, 𝑡) =
𝜆12𝜆23
𝜆2

[exp(−𝜆2𝑡) − exp(−𝜆1𝑡)
𝜆2 − 𝜆1

+ 1 − exp(−𝜆1𝑡)
𝜆1

] .

To get more insight about the interdependence of the transition probabilities and their effects on each

other, I consider the time constant case for which the transition probabilities can be solved analytically.

Assume that 𝜆ℎ𝑗(𝑡) is constant over time, i.e., independent of 𝑡 , and denote it by 𝜆ℎ𝑗 . Denote by 𝜆1 ≡
𝜆12 + 𝜆13 + 𝜆14, which is the intensity of exiting state 1 from any of the three competing risks of exit.

Similarly, denote the transition intensity of state 2 by 𝜆2 ≡ 𝜆23 + 𝜆24.

For the time homogeneous case, it is straightforward to calculate all the transition probabilities from

Eq. (5) - Eq. (10) as follows.

𝑃11 (𝑡) = exp (−𝜆1𝑡) ,
𝑃22 (𝑠, 𝑡) = exp (−𝜆2(𝑡 − 𝑠)) ,
𝑃12 (𝑡) =

𝜆12
𝜆2 − 𝜆1

[exp (−𝜆1𝑡) − exp (−𝜆2𝑡)]

𝑃13 (𝑡) =
𝜆13
𝜆1

[1 − exp(−𝜆1𝑡)]

+ 𝜆12𝜆23
𝜆2

[exp(−𝜆2𝑡) − exp(−𝜆1𝑡)
𝜆2 − 𝜆1

+ 1 − exp(−𝜆1𝑡)
𝜆1

]

𝑃14 (𝑡) =
𝜆14
𝜆1

[1 − exp(−𝜆1𝑡)]

+ 𝜆12𝜆24
𝜆2

[exp(−𝜆2𝑡) − exp(−𝜆1𝑡)
𝜆2 − 𝜆1

+ 1 − exp(−𝜆1𝑡)
𝜆1

]

𝑃2ℎ (𝑡) =
𝜆2ℎ
𝜆2

(1 − exp (−𝜆2𝑡)) , ℎ = 3, 4.

(11)

In Eq. (11), the first term on the right hand side of 𝑃13(𝑡) is the probability of directly transiting to state

3 from 1, i.e. 𝑄13(𝑡) and the second term is the probability of the indirect path 1 → 2 → 3, i.e., 𝑄123(𝑡)
in the notation of the previous section. Similar is the case for 𝑃14(𝑡). It is possible to caluclulate these

probabilities separately for our time homogeneous case.
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Notice how the transition probabilities are interdependent. For instance, note that how 𝑃13(𝑡) changes
when there is a reduction in 𝜆24. A reduction in 𝜆24 could be due to discoveries of medical technology

that reduces the probability of death from the diseased state.

In the next section, I estimate the constant transition intensities from our data set using maximum likeli-

hood procedure and study dynamics of the transition probabilities for various groups.

3 The dataset and the variables

I use the Health and Retirement Study (HRS) dataset for empirical analysis. A lot has been reported on

the family of HRS datasets—about its structure, purpose, and various modules collecting data on genetics,

biomarkers, cognitive functioning, and more, see for instance (Juster and Suzman, 1995; Sonnega et al.,

2014; Fisher and Ryan, 2017). The first survey was conducted in 1992 on a representative sample of

individuals living in households i.e., in non-institutionalized, community dwelling, in the United States

from the population of cohort born during 1931 to 1941 and their spouses of any age. “The sample was

drawn at the household financial unit level using a multistage, national area-clustered probability sample

frame. An oversample of Blacks, Hispanics (primarily Mexican Americans), and Florida residents was

drawn to increase the sample size of Blacks and Hispanics as well as those who reside in the state of

Florida’ ’, Fisher and Ryan (2017). The number of respondents were 13,593. Since 1992, the survey were

repeated every two years, each is referred to as a wave of survey. New cohorts were added in 1993, 1998,

2004 and 2010, ending the survey up with the sample size of 37,495 from around 23,000 households in

wave 12 in 2014. RAND created many variables from the original HRS data for ease of use. I create all the

variables (with a few exceptions mentioned below) from the RAND HRS dataset version P. The details of

the Rand HRS version P can be found in Bugliari et al. (2016).

As mentioned in the introduction, I define the disability health state to be one that qualifies one to be

on the disability programs OASDI or SSI. The data on disability is self-reported. Later I plan to use

the Social Security Administration’s matched administrative data on this variable and earnings variables

not included here. The matched data will, however, reduce the sample size to half, as only 50 percent

of the respondents are used for matching HRS with SSA Administrative data. The HRS data collected

information on if and when the doctor diagnosed that the respondent has any of the severe diseases such

as high blood pressure, diabetes, cancer, lung disease, heart attack, stroke, psychiatric disorder and severe

arthritis. I drop respondents who received disability before the first survey year 1992 and I also drop the

spouses in the sample who were not born between 1931 to 1941, that is the respondents in our sample are

between age 51 to 61 and not disabled or dead in 1992. I ended up with the final sample size of 9,493 for

this analysis.
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Table 1 provides a few characteristics of the data.

Table 1: Distribution of the sample by health status in various survey rounds.

Percentage distriubtion of health status

Survey year Total Normal
With

Diseases Disabled Died at age
Censored:
65.00+

1992 9,517 39.50 59.54 0.97 0.00 0.00
1994 9,425 34.49 63.15 0.81 1.55 0.00
1996 9,203 30.33 66.57 1.52 1.59 0.00
1998 8,191 25.05 62.92 1.65 1.50 8.88
2000 6,533 22.50 63.10 1.32 1.73 11.36
2002 4,867 19.29 62.81 1.11 1.19 15.59
2004 3,224 15.73 57.51 1.05 1.49 24.22
2006 1,581 8.92 39.66 0.25 0.89 50.28

3.1 Variables

The demographic variables White and Female have the standard definition. The variable College+ is a

binary variable taking value 1 if the respondent has education level of college and above (does not include

some college), i.e., has a college degree and more and taking value 0 otherwise.

cesd: I used a score on the Center for Epidemiologic Studies Depression (CESD) measure in various waves

that is created by RAND release of the HRS data. RAND creates the score as the sum of five negative

indicators minus two positive indicators. “The negative indicators measure whether the Respondent

experienced the following sentiments all or most of the time: depression, everything is an effort, sleep

is restless, felt alone, felt sad, and could not get going. The positive indicators measure whether the

Respondent felt happy and enjoyed life, all or most of the time.’ ’ I standardize this score by subtracting 4

and dividing 8 to the RAND measure. The wave 1 had different set of questions so it was not reported in

RAND HRS. I imputed it to be the first non-missing future CESD score. In the paper, I refer the variable

as cesd. Steffick (2000) discusses its validity as a measure of stress and depression.

cogtot: This variable is a measure of cognitive functioning. RAND combined the original HRS scores

on cognitive function measure which includes “immediate and delayed word recall, the serial 7s test,

counting backwards, naming tasks (e.g., date-naming), and vocabulary questions”. Three of the original

HRS cognition summary indices—two indices of scores on 20 and 40 words recall and third is score on the

mental status index which is sum of scores “from counting, naming, and vocabulary tasks”—are added

together to create this variable. Again, due to non-compatibility with the rest of the waves, the score in

the first wave was not reported in the RANDHRS. I have imputed it by taking the first future non-missing
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value of this variable.

bmi: The variable body-mass-index (BMI) is the standard measure used in the medical field and HRS

collected data on this for all individuals. If it is missing in 1992, I impute it with the first future non-

missing value for the variable.

Now I describe the construction of the behavioral variables.

Behavior: Smoking: This variable is constructed to be a binary variable taking value 1 if the respondent

has reported yes to ever smoked question during any of the waves as reported in the RAND HRS data

and then repeated the value for all the years.

Behavior: Exercising: The RAND HRS has data on whether the respondent did vigorous exercise three

or more days per week. I created a variable to take value 1 in each period if the respondent did vigorous

exercise three or more days per week in any of the waves, and value 0 otherwise. I then assign that

variable to the variable Behavior: Exercising for all the years.

4 Econometric parameterization and Estimation

In statistical models, the dependence of transition probabilities on individual characteristics is generally

done through parametric or semi-parametric specification of the transition intensity functions Γ (𝑡). One

then estimates the transition probabilities from the non-parametric or semi-parametric estimates of the

integrated transition functions. An integrated transition intensity function Λℎ𝑗 (𝑡) for a transition ℎ → 𝑗
is defined by Λℎ𝑗 (𝑡) = ∫𝑡0 𝜆ℎ𝑗 (𝑢) 𝑑𝑢. Just like for a continuous random variable, it is easier to estimate

its cumulative density function nonparametrically than its density function, for the time-to-event data

with censoring, it is easier to estimate the integrated hazard function than the intensity function. While

for the discrete case this problem does not arise, estimation of transition probabilities via nonparametric

estimates of the integrated hazard function is an unified approach encompassing both discrete time and

continuous time data. I follow this strategy.

To explain and gain insights into this estimation strategy, denote the matrix of all the cumulative hazard

functions as Λ (𝑡) = (Λℎ𝑗 (𝑡))ℎ,𝑗=1,2,3,4, and the matrix of the derivatives of the component functions by

𝑑Λ (𝑡). Let the time interval [𝑠, 𝑡] is subdivided into a partition of 𝑚 sub-intervals with cut-off points

𝑠 = 𝑡0 < 𝑡1 < ... < 𝑡𝑚 = 𝑡. Denote the partition by 𝑃(𝑚). Denote the largest size of the sub-intervals

by |𝑃(𝑚)| ≡ max{|𝑡𝑖 − 𝑡𝑖−1|, 𝑖 = 1, ..., 𝑚}. Applying repeatedly the Chapman-Kolmogorov Eq. (2) on the
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sub-intervals of the partition, we have

𝑃(𝑠, 𝑡) = 𝑃(𝑡0, 𝑡1) ⋅ 𝑃(𝑡1, 𝑡2) ⋅ ... ⋅ 𝑃(𝑡𝑚−1, 𝑡𝑚) =
𝑚
∏
𝑖=1

𝑃(𝑡𝑖−1, 𝑡𝑖) (12)

Note that as |𝑡𝑖−1−𝑡𝑖| → 0, the transition probability matrix 𝑃(𝑡𝑖−1, 𝑡𝑖) → 𝑃(𝑡𝑖−1, (𝑡𝑖−1+𝑑𝑡) = 𝐼 +Γ(𝑡)𝑑𝑡 .4 With

finer subdivisions of the interval [𝑠, 𝑡] such that the maximum length of the sub intervals tends to 0, the

right hand side of Eq. (12) converges to a matrix called the the product integral5 of the integrated hazard

functions Λ(𝑠, 𝑡). This product integral is denoted as P𝑡
𝑠 (𝐼 + 𝑑Λ (𝑢)). Or in other words, the transition

probabilities of a stochastic process parameterized via an intensity process is given by the product integral

of the integrated transition intensity functions.

𝑃(𝑠, 𝑡) =
𝑡

R𝑠 (𝐼 + 𝑑Λ(𝑢)). (13)

The above product-integral solution is a generalization of the Kaplan-Meier (Kaplan and Meier (1958))

product-limit formula for the survival function in survival analysis. The product integral formula uni-

fies both discrete time and continuous time Markov processes. It is an extremely useful apparatus for

statistical analysis of Markov processes.

The most widely used statistical procedure to estimate the transition probabilities 𝑃(𝑠, 𝑡), 𝑠, 𝑡 ∈ 𝑇 , 𝑠 < 𝑡 is to
plug in an estimateΛ (𝑢) in Eq. (13). The effect of covariates is incorporated by conditioning the transition

intensity functions Γ(𝑡; 𝑋 (𝑡)) on the covariates process 𝑋(𝑡). There are many ways to get these estimates.

I will follow two approaches in this paper: First, I will explore the more widely used non-parametric

Aalen-Johnson-Fleming method via Nelson Aalen estimates for each-component of the Λ̂ (𝑢; 𝑋 (𝑢)) with

Cox proportional hazard model to incorporate the time-varying covariate effects in the next sub-section.

Second, the Neural network approach explored in a later section.

4.1 Aalen-Johansen Estimator of Transition Probabilities

Most widely used statistical procedure incorporates the time-varying covariates for the transition proba-

bilities by specifying a semi-parametric functional form for the intensity hazard functions

𝜆ℎ𝑗 (𝑡; 𝑋 (𝑡)) = 𝜆0ℎ𝑗 (𝑡) 𝑒𝛽
′
ℎ𝑗𝑋(𝑡). (14)

4From the definition of transition intensity and writing it in matrix form, we have Γ (𝑡) = limΔ𝑡↓0
𝑃(𝑡,𝑡+Δ𝑡)−𝑃(𝑡,𝑡)

Δ𝑡 =
limΔ𝑡↓0

𝑃(𝑡,𝑡+Δ𝑡)−𝐼
Δ𝑡 . From this it follows that for small Δ𝑡 , we have 𝑃(𝑡, 𝑡 + Δ𝑡) = 𝐼 + Γ(𝑡)Δ𝑡 .

5For a more formal treatment of product integral see Gill and Johansen (1990) and for a lucid exposition with some applica-
tions, see Gill (2005).
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In the above specification, 𝜆0ℎ𝑗 (𝑡) is known as the baseline hazard function. The specification of transition

intensity in Eq. (14) is known as the proportional hazard model. It aggregates the effects of the regressors

linearly as a measure of some kind of latent factor, and that latent factor shifts the baseline hazard pro-

portionately, i.e., the effect on hazard is uniform over time. Two papers (Fleming (1978) and Aalen and

Johansen (1978)) independently extended the Kaplan-Meier nonparametric product limit estimator from

survival analysis to the multi-state time to event models. While Fleming (1978) gave the estimator for

complete data, Aalen and Johansen (1978) gave the estimator for censored data. To describe the Aalen-

Johansen estimator, let me introduce some concepts and notation. For each individual 𝑖, 𝑖 = 1, 2, ..., 𝑛 and

corresponding to each transient health state, ℎ, ℎ = 1, 2, define two types of stochastic processes: (1) the

counting processes 𝑁ℎ𝑗,𝑖(𝑡) denoting the observed number of transitions from health state ℎ to health

state 𝑗 that the individual 𝑖 has made by time 𝑡—which in our case is either 0 or 1, since by assumption

when an individual exits a health state, the individual does not return to it in future ; and (2) 𝑌ℎ,𝑖(𝑡), taking
value 1 if individual 𝑖 is at risk at time 𝑡 for transition to another possible health state, and taking value 0
otherwise.

Let us focus on one transition ℎ → 𝑗. Denote by �̄�ℎ𝑗(𝑡) = ∑𝑛
𝑖 𝑁ℎ𝑗,𝑖(𝑡), a counting process measuring the

number of transitions of the ℎ → 𝑗 in the sample at time 𝑡 , ̄𝑌ℎ(𝑡) = ∑𝑛
𝑖 𝑌ℎ,𝑖(𝑡), a counting process measuring

the number of individuals in the sample at risk for a transition at time 𝑡 , and �̄�ℎ𝑗(𝑡) = ∑𝑛
𝑖 𝑀ℎ𝑗,𝑖(𝑡). In any

empirical study the data will be at the discrete times, say in ordered times 0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑚. At each

time 𝑡𝑖, we calculate

�̂�ℎ𝑗 (𝑡𝑖) =
△�̄�ℎ𝑗 (𝑡𝑖)

̄𝑌ℎ (𝑡𝑖)
, 𝑗 ≠ ℎ, (15)

Without covariates, the Nelson-Aalen non-parametric estimate of the integrated intensity functions is

given by, for each ℎ = 1, 2
Λ̂ℎ𝑗 (𝑡) = ∑

𝑖∶𝑡𝑖≤𝑡
�̂�ℎ𝑗 (𝑡𝑖) , 𝑗 ≠ ℎ,

Λ̂ℎℎ (𝑡) = −∑Λ̂ℎ𝑗 (𝑡)
Λ̂ℎ𝑗 (𝑡) = 0 for all other ℎ, 𝑗 combinations

The Aalen-Johansen estimator ̂𝑃 (𝑠, 𝑡), 𝑠, 𝑡 , ∈ 𝑇 , 𝑠 < 𝑡 for the transition probabilities is obtained by substi-

tuting for each component ℎ𝑗 the Nelson-Aalen estimates Λ̂ℎ𝑗(𝑡) and then applying the product integral

formula Eq. (13) as follows

̂𝑃 (𝑠, 𝑡) = ∏
𝑠<𝑢<𝑡

(𝐼 + 𝑑Λ̂ (𝑢)) = ∏
𝑖∶𝑡𝑖≤𝑡

(𝐼 + [Λ̂ (𝑡𝑖) − Λ̂ (𝑡𝑖−1)]) . (16)
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In the counting process framework, Andersen, Borgan, et al. (1993) derive the following generalized Cox

partial likelihood to get parameter estimates of the Cox regression models

𝐶𝐿 (𝛽) = ∏
𝑖

∏
ℎ=1,2𝑗=2,3,4ℎ≠𝑗

∏
𝑡
(

𝑌ℎ,𝑖 (𝑡) exp (𝛽′ℎ𝑗𝑋ℎ,𝑖(𝑡))
∑𝑟 𝑌ℎ,𝑟 (𝑡) exp (𝛽′ℎ𝑗𝑋ℎ,𝑟 (𝑡))

)
△𝑁ℎ𝑗,𝑖(𝑡)

(17)

With covariates, one obtains the Cox partial likelihood estimate for ̂𝛽ℎ𝑗 for each transition ℎ → 𝑗 separately
and then computes an weighted risk set defined by

̄𝑌 ∗ℎ𝑗(𝑡) =
𝑛
∑
𝑖=1

𝑌ℎ𝑗,𝑖 (𝑡) exp ( ̂𝛽′ℎ𝑗𝑋ℎ,𝑖(𝑡)) . (18)

The estimates of cumulative intensities with covariates are obtained from Eq. (15) by replacing, ̄𝑌ℎ(𝑡)with
̄𝑌 ∗ℎ𝑗(𝑡).

Nelson-Aalen estimator has nice statistical property. For instance, using Martingale calculus it can be

shown that the estimator is asymptotically unbiased. Using the results from Martingale theory, one can

derive the formula for variance-covariance estimates of parameter estimates and the normalized estimate

is normally distributed (central limit theorem holds for normalized parameter estimates), for details see,

(Aalen, Borgan, et al., 2008; Andersen, Borgan, et al., 1993; Fleming and Harrington, 2005).

The likelihood of the sample is given by6 ,

𝐿 (𝜃) = ∏
𝑖

∏
ℎ=1,2𝑗=2,3,4ℎ≠𝑗

(∏
𝑡
𝜆ℎ𝑗,𝑖 (𝑡 ∣ 𝑋ℎ,𝑖(𝑡))△𝑁ℎ𝑗,𝑖(𝑡)) ×

exp (−∫
𝑇 ∗ℎ,𝑖

0
𝜆ℎ𝑗,𝑖 (𝑢 ∣ 𝑋ℎ,𝑖(𝑢))) 𝑑𝑢

(19)

Parametric models specify distributions for 𝜆ℎ𝑗,𝑖(𝑡)’s in Eq. (19) such asWeibull and Gamma. Even without

covariates, close-form solution of the maximum likelihood parameter estimates for the Weibull model is

difficult. But for without covariates time-constant intensity processes, close form solutions can be derived

(see next subsection).

4.2 Time constant transition intensities without covariates

For time constant hazard with no covariates, 𝜆ℎ𝑗 (𝑡) = 𝜆ℎ𝑗 , i.e. for exponential model, close-form solution

can be derived, which after simplification is given by

6For details, see (Andersen, Borgan, et al., 1993; Andersen and Perme, 2008; Commenges, 2002).
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�̂�ℎ𝑗 =
𝑁 ℎ𝑗
̄𝑇 ∗ℎ
; 𝑉 (�̂�ℎ𝑗) =

𝜆2ℎ𝑗
𝑁 ℎ𝑗

; 𝑠.𝑒 (�̂�ℎ𝑗) = √𝑁 ℎ𝑗
̄𝑇 ∗ℎ

where 𝑁 ℎ𝑗 = ∑𝑛ℎ𝑖=1 ∫𝑡0 𝑁ℎ𝑗,𝑖 (𝑡) 𝑑𝑡 is the total number of transitions of type ℎ → 𝑗, 𝑛ℎ is the total number of

individuals in the health state ℎ, and the common denominators in all the expression ̄𝑇 ∗ℎ = ∑𝑛ℎ𝑖=1 𝑇 ∗ℎ,𝑖 is the
total of all completed transition times and censor times of individuals who are in health state ℎ, (ℎ = 1, 2)
in the extended sample.

I first report the estimates of time constant transition intensities for the overall sample and illustrate the

interdependence of the transition probabilities and how they evolve over time. Then I compare these

estimates of transition intensities and transition probabilities for a selected few groups in Table 3.

Probabilities of following various paths for the estimated time constant parameters: �̂�12 = 0.0369, �̂�13 =
0.0038, �̂�14 = 0.0019, �̂�23 = 0.0042, �̂�24 = 0.0056

Figure 2: Path diagram of health trajectors.

To get an idea about these transition probabilities over time, I plot transition probabilities out of state 1
in Figure 3 panel (a) and out of state 2 in Figure 3 panel (b).

It will be interesting to compute the distributions of waiting times 𝑇13 and 𝑇123 and compare them em-
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Figure 3: Transition probabilities (a) from normal health state, (b) from one-or-more diseased health state

pirically. For various groups the maximimum likelihood parameter estimates and selected transition

probabilities at at age 65 starting at age 50 in normal health status and diseased health status are given in

Table 3.
Table 3: Maximum likelihood estimates of the time constant intensities and transition probabilities at age
65 starting at age 50 for various groups

group #nobs 𝜆12 𝜆13 𝜆14 𝜆23 𝜆24 𝑃13(65) 𝑃23(65) 𝑃14(65) 𝑃24(65)
overall 15046 0.037 0.004 0.002 0.004 0.006 0.056 0.059 0.039 0.078
White 8757 0.037 0.003 0.002 0.004 0.005 0.048 0.054 0.033 0.071
NonWhite 2191 0.036 0.007 0.004 0.006 0.007 0.089 0.076 0.066 0.101
Female 5754 0.038 0.003 0.001 0.004 0.004 0.052 0.059 0.030 0.060
Male 5194 0.036 0.004 0.002 0.004 0.007 0.059 0.058 0.049 0.098
College+ 1943 0.035 0.001 0.001 0.002 0.004 0.020 0.026 0.022 0.051
No
college+

9005 0.038 0.004 0.002 0.005 0.006 0.064 0.065 0.044 0.083

bmi>25 6957 0.041 0.004 0.002 0.004 0.005 0.062 0.062 0.038 0.073
bmi<=25 3989 0.032 0.003 0.002 0.004 0.006 0.048 0.050 0.042 0.088
Smoker 9441 0.037 0.004 0.003 0.005 0.007 0.063 0.066 0.054 0.099
Nonsmoker 5605 0.036 0.003 0.001 0.003 0.003 0.043 0.046 0.017 0.041
Exercise 11194 0.038 0.003 0.001 0.004 0.003 0.042 0.053 0.023 0.041
No exercise 3852 0.033 0.009 0.006 0.006 0.014 0.116 0.074 0.097 0.181

4.3 Unobserved heterogeneity, dynamic selection and mixed transition intensity and
transition probabilities

Much of the research on frailty is carried out for the two-state alive-death type models, i.e., in the notation
of this paper, models with 𝑆 = {1, 2}, 1 = alive, 2 = death or 2 = disability, treating it as an absorbing state.
The most widely used models of frailty extends the base line hazard specification Eq. (14) as follows:

𝜆ℎ𝑗 (𝑡; 𝑋 (𝑡), 𝑉ℎ𝑗) = 𝜆0ℎ𝑗(𝑡)𝑉ℎ𝑗𝑒𝑋(𝑡)𝛽ℎ𝑗 = 𝜆0ℎ𝑗(𝑡)𝑒𝑋(𝑡)𝛽ℎ𝑗+𝐵ℎ𝑗 . (20)

where 𝑉ℎ𝑗 ≡ 𝑒𝐵ℎ𝑗 . The variable 𝑉ℎ𝑗 is the aggregate effect of all the unobserved covariates and it is as-
sumed to be a random variable and hence known as the random effect. The interpretation of the frailty
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Table 2: Transition Probabilities for transitions 𝑖 → 𝑗 by duration of stay in each state 1 and 2 for the
model with time constant intensities

Duration 1 -> 1 2 -> 2 1 -> 2 1 -> 3 2 -> 3 1 -> 4 2 -> 4

51 1.000 1.000 0.000 0.000 0.000 0.000 0.000

52 0.958 0.990 0.036 0.004 0.004 0.002 0.006

53 0.918 0.981 0.070 0.008 0.008 0.004 0.011

54 0.880 0.971 0.102 0.011 0.012 0.006 0.016

55 0.843 0.962 0.133 0.015 0.016 0.009 0.022

56 0.808 0.952 0.162 0.019 0.020 0.011 0.027

57 0.774 0.943 0.189 0.023 0.024 0.014 0.032

58 0.742 0.934 0.215 0.026 0.028 0.016 0.038

59 0.711 0.925 0.240 0.030 0.032 0.019 0.043

60 0.681 0.916 0.263 0.034 0.036 0.022 0.048

61 0.653 0.907 0.285 0.037 0.040 0.024 0.053

62 0.626 0.898 0.306 0.041 0.044 0.027 0.058

63 0.600 0.889 0.325 0.045 0.048 0.030 0.063

64 0.575 0.881 0.344 0.048 0.051 0.033 0.068

65 0.551 0.872 0.361 0.052 0.055 0.036 0.073

Source: Author’s calculation.

or unobserved heterogeneity variable 𝑉ℎ𝑗 is that it imparts a random proportional shift of the baseline
intensity by a multiplier of magnitude 𝑣ℎ𝑗 , the realized value of the random variable 𝑉ℎ𝑗 for an individual.
Individuals with higher realized values of 𝑣ℎ𝑗 are more frail and will have higher probabilities of transition
at any given age. For identification, it is assumed that 𝐸(𝑉ℎ𝑗) = 1. An individual with 𝑉ℎ𝑗 = 1 will be
referred as an average individual.

Very little is known for multi-state models, as these models are very difficult to handle analytically and
numerically. Three types of statistical problems arise when unobserved heterogeneity is present.

First, in the presence of unobserved heterogeneity, the parameter estimates of the included covariates be-
come asymptotically biased (Vaupel et al., 1979; Heckman and Singer, 1984; Aalen, Valberg, et al., 2014).
In a two-state framework of the above type, Ripatti and Palmgren (2000) assumed that the frailty random
variable 𝑉 is log-normally distributed with mean 1 and variance 𝜃 and applied a Laplace approximation
to the marginal likelihood function7 of the sample. They decomposed the approximated likelihood func-
tion into two components — one component allowed one to apply the penalized Cox partial likelihood
procedure to estimate 𝛽’s, 𝑏’s and their standard errors, given 𝜃 fixed, and the other component provided
the estimatators for 𝜃 and its standard errors, given the estimated 𝛽’s and 𝑏’s, alternating the two-steps it-
eration until convergence. One fallout of their estimation procedure is that the estimated standard errors

7Marginal likelihood function is the expectation of the conditional likelihood function given frailty level over the distribution
of the frailty. This is also known as the mixture likelihood function.
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of the 𝛽’s and 𝑏’s are underestimated as the penalized partial likelihood for estimating those parameters
and their standard errors for a fixed value of 𝜃 . In their simulation exercise, they showed that the biases
are small. This estimation procedure is implemented in the R package coxme by Therneau (2022). The
package also provides a 𝜒2 statistic to test the null hypothesis 𝐻0 ∶ 𝜃 = 0.8 In the second specification,
I assume that the random effects across transitions are identical, i.e., a common or shared random effect
across all transitions for each individual. These parameter estimates are used for the policy analysis of
Section 7. The estimated fixed effects and the 𝜒2 statistic to test if the common frailty has variance 0 are
reported in Appendix B, Table 9.

In the multi-state framework, one has a vector of frailties 𝐵 = (𝐵ℎ𝑗 , ℎ, 𝑗 ∈ 𝑆, 𝑗 ≠ ℎ), each component
corresponds to a transition. No estimation procedures are available for a general distribution of 𝐵. As a
first step, I consider two types of frailty distributions that enable one to apply the Ripatti and Palmgren
(2000) technique and the Therneau (2022) coxme package to get parameter estimates for the multi-state
model. In one specification, I assume that the frailty random effects are independent across transitions.
This allows one to apply the Ripatti and Palmgren (2000) technique to each transition separately. These
parameter estimates together with the 𝜒2 test statistics for each transition are reported in Table 6. I found
that the parameter estimates are all slightly higher in magnitude compare to the parameter estimates of
the Cox models without including unobserved heterogeneity.

Another set of problems with unobserved heterogeneity is that the estimates of transition intensities and
transition probabilities computed even with the bias corrected regression coefficients of the covariates
in Eq. (15) - Eq. (18) are for an average individual, i.e., for an individual with frailty level equals the
population average frailty level. They will give biased estimates of the population averages because of
the dynamic selection. The higher is the variance of the random effect, the higher is the bias. I explain it
with the above two-state model. Let the Laplace transform of the frailty random variable 𝑉12 be denoted

as ℒ12(𝑐)
𝑑𝑒𝑓= ∫∞0 𝑒−𝑐𝑣𝑑𝐺12(𝑣 ; 𝜃), where 𝐺12(𝑣 ; 𝜃) is the distribution function of 𝑉12.9 The superscript 𝑚 on

an entity will be used to represent the entity’s marginal distribution or the population average. Note that
the survival function of an individual with unobserved heterogeneity or frailty level 𝑉12 = 𝑣 is given by
𝑃11(𝑡; 𝑋 , 𝑣) = 𝑒𝑥𝑝(−𝑣Λ12(𝑡; 𝑋 )). The population survival function is a mixture of the individual survival
functions and is given by

𝑃𝑚11(𝑡; 𝑋 ) ≡ ∫
∞

0
𝑒𝑥𝑝(−𝑣Λ12(𝑡; 𝑋 ))𝑑𝐺12(𝑣 ; 𝜃) = ℒ12(Λ12(𝑡; 𝑋 )) (21)

The population-average transition intensity or the hazard rate is given by

𝜆𝑚12(𝑡; 𝑋 ) ≡ −𝑑𝑙𝑛𝑃𝑚11(𝑡; 𝑋 )/𝑑𝑡 = −𝜆12(𝑡; 𝑋 )ℒ
′12(Λ12(𝑡; 𝑋 ))

ℒ12(Λ12(𝑡; 𝑋 ))
= 𝜆12(𝑡; 𝑋 ) ∫

∞

0
𝑣𝑑𝐺12(𝑣 ∣ 𝑋 , 𝑇 ≥ 𝑡; 𝜃)

8The specification in both Ripatti and Palmgren (2000) and Therneau (2022) are more general. The framework is capable of
estimating shared frailty models, groups of records sharing common frailties by specifying appropriate design vectors for the
frailty term in Eq. (20).

9When 𝐺(.) is a gamma distribution, with mean 1 and variance 𝜃 , one can derive that ℒ(𝑐) = (1 + 𝜃𝑐)−1/𝜃 .
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An individual with higher frailty level will have higher probability of encountering a transition. As time
progresses, the transition free population of given characteristics 𝑋 consists of higher proportion indi-
viduals of lower frailties as compared to an earlier time. This is what is meant by dynamic selection. This
dynamic selection will make the average frailty level of the transition-free population over time — i.e.,
the value of the integral in the second line of Eq. (22) — become smaller and smaller, except at 𝑡 = 0
when they are equal. A fallout of this is that the proportionality assumption of the individual intensity
functions will not hold for the population-average intensity function. As a result, an estimated regression
coefficient of a covariate will give biased estimate of its hazard ratio or the average treatment effect at the
population level. Another fallout of the dynamic selection is that the average of the individual transition
probabilities of a population 𝑃𝑚12(𝑡; 𝑋 )will be smaller and smaller over time than the transition probability
of the average individual, 𝑃12(𝑡; 𝑋 , 𝑉12 = 1). Furthermore, the higher the variance 𝜃 of 𝑉12, the smaller
becomes 𝑃𝑚12(𝑡; 𝑋 ) for all time 𝑡 > 0. When the frailty variance 𝜃 → 0, the average transition probability
𝑃𝑚12(𝑡; 𝑋 ) → 𝑃12(𝑡; 𝑋 , 𝑉12 = 1) the transition probability of the average individual. Figure 4 illustrates
the above for the case of a constant baseline hazard function without covariates for the gamma frailty
distribution with two values for 𝜃 .
Figure 4: Comparing the probability of a transition for an individual with average frailty level, 𝑃12(𝑡 ∣ 𝑉 =
1), with population average 𝑃𝑚12(𝑡) for 𝜆 = .04, and 𝜃 = 0.492, 𝜃1 = 0.8
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For general multi-state models such as ours, no tractable numerical algorithms are currently available to
compute the population-averages of transition intensities or transition probabilities of individuals. In the
policy analysis Section 7, I will use the transition intensities and transition probabilities of the average
individual, i.e., the individual with all 𝑉ℎ𝑗 = 1 to study treatment effects of policies.

4.4 Time varying transition intensities without covariates

I compute the Aalen-Johansen estimates of the transition probabilities and their standard errors using the
R package, mstate, developed and described by the authors in Wreede et al. (2010).

Figure 5 panel(a) shows the probabilities of a representative individual (i.e., one with the mean value of all
the regressors) of age 51 to remain in normal health, contact one-or-more diseases, become disabled or die
as the years pass by. Similarly, Figure 5 panel(b) shows the corresponding probabilities for an individual
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of age 51 who is in the health state of one-or more diseases.

Figure 5: Transition probabilities (a) from normal health state and (b)from one-or-more diseased health
state

27



Table 4: Transition probabilities for transition 𝑖 → 𝑗 by duration of stay in state 1 and 2 from the
semi-parametric multistate model

Duration 1 -> 1 2 -> 2 1 -> 2 1 -> 3 2 -> 3 1 -> 4 2 -> 4
51 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
52 0.9933 0.9699 0.0000 0.0022 0.0181 0.0045 0.0120
53 0.9201 0.9629 0.0633 0.0078 0.0211 0.0089 0.0160
54 0.8756 0.9412 0.0983 0.0152 0.0347 0.0109 0.0241
55 0.8203 0.9242 0.1468 0.0184 0.0441 0.0144 0.0317
56 0.7744 0.9080 0.1841 0.0237 0.0524 0.0179 0.0396
57 0.7176 0.8912 0.2315 0.0281 0.0616 0.0227 0.0472
58 0.6701 0.8691 0.2673 0.0353 0.0744 0.0274 0.0565
59 0.6202 0.8506 0.3065 0.0417 0.0854 0.0316 0.0640
60 0.5791 0.8310 0.3362 0.0479 0.0954 0.0368 0.0735
61 0.5319 0.8098 0.3694 0.0544 0.1049 0.0443 0.0853
62 0.4871 0.7887 0.3978 0.0639 0.1159 0.0511 0.0953
63 0.4434 0.7749 0.4315 0.0680 0.1211 0.0572 0.1040
64 0.4411 0.7630 0.4249 0.0702 0.1240 0.0638 0.1129
65 0.3733 0.7556 0.4877 0.0712 0.1254 0.0678 0.1190

Compare the non-parametric time non-homogeneous transition probability estimates in Table 4 with the
parametric time-homogeneous estimates in Table 3 for the overall sample without covariates. They are
very close to each other.

5 Childhood factors, health behaviors and mid-age health outcomes

As mentioned in the introduction, the molecular biology literature points out that stressors of the body
cells are important factors during early development and later life health progression.10 While cellular
level stressors during early cell developments cannot be directly observed or measured, many socioe-
conomic factors that modulate the cell level stressors can be observed. Those early life socioeconomic
factors thus affect early life health outcomes. Furthermore, early life health developments together with
later life health behaviors determine later life health outcomes. Health behaviors are also partly deter-
mined by cognitive abilities. Education level, an indicator of cognitive ability, can thus affect health
behaviors and health developments in later life. Education is also an important determinant of earnings,
which affect health related expenditures and thus health outcomes.

The HRS dataset does not have prenatal or postnatal data on individuals. It has a few variables on child-
hood socioeconomic status, which are correlates of the stressors of cell developments. How does one
quantify childhood SES (denoted as cSES now on)? There is no consensus on what exactly constitutes
cSES. Some studies use different sets of variables to represent cSES. For instance, Heckman and Raut
(2016) and a few other studies used parents’ education as a measure of childhood SES in modeling the

10Genetic make-up also controls gene expressions for producing proteins that create diseases but the epigenetic factors creat-
ing the stressors are important as well.
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attainment of college degree. Luo and Waite (2005) used Father’s and Mother’s education and the Family
financial well-being as regressors without aggregating them into a single measure to examine how these
variables affect middle age health outcomes for the HRS sample. It is, however, useful to have a single
measure of cSES. Some studies used the latent variable approach to come up with a statistically defined
measure of cSES. For instance, Vable et al. (2017) used the Mplus software to create their latent variable
measure of cSES using a number of childhood variables from the HRS dataset. I have used a slightly
different latent variable statistical procedure IRT on a set of parental characteristics during the childhood
of the respondents described in Section 4.2. I use this variable and a few other variables in the Logistic
regression models of the childhood factors described below.

Childhood health status (cHLTH) is an important factor for later life health outcomes and educational
attainments. The cSES variable influences the stressors of the cells’ environment and thus will affect
cHLTH. Apart from cSES, other factors such as nutrition and pediatric health care are also important
factors. We do not have data on those variables. In the next subsection I will specify a Logit model of
cHLTH with childhood socioeconomic status and other observable characteristics as regressors.

Cognitive skill or Education level is an important factor for later life health outcomes as it determines
various health related choices an individual makes throughout life. It is also an important determinant
of earnings, and employment with or without covered health insurance. Similar to many studies, I use
a binary education level, College+. Many factors — such as innate IQ, family background, preschool
inputs, prenatal and postnatal stressors for brain development, the childhood health status, and mother’s
time input — determine the College+ variable. See, Heckman (2008) and Raut (2018) for recent literature
on the biology of brain development and the roles played by socioeconomic factors, and Heckman and
Raut (2016) for a Logit model of College+ in which a measure of IQ, family background measured with
parents’ education, preschool inputs and non-cognitive skills play important roles. HRS does not have
data on many such variables. I use cSES and cHLTH, together with a few other demographic variables as
regressors in the Logistic regression specifications College+ in the next subsection.

I examine two types of middle age health outcomes: (1) initial health status, Init.HLTH, of the respondents
in their early 50swhen they first participated in the HRS study; and (2) pathways through the health states
that they traversed starting from the initial health state. Both types of health outcomes are modeled
as functions of childhood factors, cSES, cHLTH and College+. The sub@sec-sec5-1 below has the first
model, and the sub@sec-sec5-2 has the secondmodel and the third model that adds biomarkers and health
behaviors as regressors

5.1 Models of childhood socioeconomic status, childhood health and initial middle
age health

In this subsection, I estimate three sets of Logistic regression models for cHLTH, College+ and Init.HLTH.
In each set, I have two specifications of Logistic regression models: in one, I include the cSES measure
that I created in this paper, and in the second, I include in its palce three family background variables
used in Luo and Waite (2005) — Father’s Education, Mother’s Education and Father’s job situation during
the respondent’s childhood, controlling for other common regressors in both models, as can be seen in
Table 5. I then examine if the coefficient estimates and their significance levels of the common covariates
of the models are similar. If they are similar, then the single measure cSES of the paper is validated as a
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single measure of cSES. I have also calculated the pseudo 𝑅2 defined as 𝑅2 = (1 − 𝑑𝑒𝑣 𝑖𝑎𝑛𝑐𝑒/𝑛𝑢𝑙𝑙𝑑𝑒𝑣 𝑖𝑎𝑛𝑐𝑒).
It turns out to be the case that the parameter estimates of the common regressors mostly do not differ in
statistical significance levels and numerical magnitudes. The 𝑅2 for the models with the regressor cSES is
slightly higher or close to the 𝑅2 of the competingmodels. Therefore, the measure cSES constructed in the
paper is validated with respect to these three Logistic regression models and will be used as a childhood
socioeconomic status variable.

Table 5: Effects of childhood factors, race and sex on childhood health, college education and initial
health in early 50s

cHLTH College+ Init.HLTH
Variables (1) (2) (1) (2) (1) (2)

Intercept 0.220 *** 0.162 -2.205 *** -3.981 *** -1.028 *** -1.132 ***
(0.053) (0.091) (0.087) (0.153) (0.063) (0.098)

White 0.282 *** 0.221 *** 0.227 ** -0.076 0.226 *** 0.193 **
(0.053) (0.066) (0.077) (0.089) (0.057) (0.067)

Female -0.022 -0.012 -0.537 *** -0.571 *** -0.218 *** -0.177 ***
(0.044) (0.053) (0.057) (0.063) (0.044) (0.050)

Childhood SES 0.841 *** 1.328 *** 0.222 ***
(0.054) (0.058) (0.051)

Father’s Education 0.038 *** 0.109 *** 0.021 *
(0.009) (0.011) (0.009)

Mother’s Education 0.029 ** 0.139 *** -0.000
(0.010) (0.013) (0.009)

Father’s Job 0.447 *** 0.714 *** 0.042
(0.096) (0.084) (0.078)

Childhood Health 0.342 *** 0.407 *** 0.206 *** 0.217 ***
(0.064) (0.077) (0.048) (0.057)

College+ 0.149 * 0.137 *
(0.059) (0.064)

N 9601 7457 9601 7457 9601 7457
logLik -6033.46 -4287.09 -4067.75 -3234.41 -5993.22 -4726.98
AIC 12074.91 8586.18 8145.49 6482.82 11998.45 9469.96

R Square 0.026 0.018 0.085 0.136 0.010 0.008

*** p < 0.001; ** p < 0.01; * p < 0.05.

From the statistically significant parameter estimates of the variable cSES in the models with cSES as a
regressor, we see that cSES has positive effect on childhood health, and on the probability of attaining
College+ education and on the probability of possessing normal health state as opposed to diseased health
state up to one’s early 50s.

The estimated College+ and Init.Health models show that a better childhood health leads to a higher
probability of College+ education and a higher probability of being in normal health in one’s early 50s. A
College+ education also has a significant positive effect on the probability of possessing normal health in
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one’s early 50s.

The estimates also show that the race variable White has positive effect on the probabilities of achieving
better childhood health, attaining College+ education, and possessing normal health in one’s early 50s.
The gender variable Female has no significant effect on childhood health. But females have a lower
probability of completing college and remaining in good health in their early 50s.

It is possible that even after controlling for cSES, cHLTH and College+, the race and gender variables
might be picking up the effects of health behaviors. I cannot control for health behaviors in the models of
this subsection as the HRS data does not have data on health behaviors prior to the survey years. In the
next two subsections, I will examine the effects of race and gender variables, controlling for the effects
of childhood factors, biomarkers, and health behaviors on the health developments through middle ages,
more specifically on probabilities of following different health trajectories starting at age 51.

5.2 Childhood factors, health behaviors, and middle age health pathways

For the Cox regression parameter estimates, I have used both the R package mstate (see, Wreede et al.
(2010) for details) and also used the SAS procedure phreg (both produced the same estimates) and used the
mstate package to estimate all the transition probabilities (SAS does not have readily available procedure
for this purpose). The parameter estimates are shown in Table 6.

Most important factors in Table 6 are cesd, measuring depression and stress and college graduation or
higher education, with positive effect on all transitions with the exception of no effect on transition from
normal health to death. Other important factors are smoking, with significant adverse effect on transi-
tions, and exercising three or more times regularly has significant favorable effect on most transitions.
The alcohol use has no significant detrimental effect. Instead it reduces the risk of disability and death
for people with diseases.

To understand the quantitative significance of these estimates, consider the parameter estimate of -1.48
for the variable Childhood Health and event 1 → 4 in Table 6. This says that an individual of a given age
of normal health status who had normal health status in childhood will have a 0.228 ≡ 𝑒𝑥𝑝(−1.48) times
lower risk of death before becoming disabled. The quantity 𝑒𝑥𝑝(𝛽), for a variable with coefficient 𝛽 , is
known as the hazard ratio of the variable. The effects of other parameters can be easily seen from the
table.

Is there evidence for racial reversal in mortality rates for the middle age non-college educated non-Latino
white population as reported in Case and Deaton (2015)? They found higher mortality rates for the non-
college educated white men and women of ages 45 to 55 during 1993 to 2013 compared to the non-white
peers of the same characteristics. They attributed this higher mortalities to increases in their incidence
rates of drug and alcohol poisoning, suicide, chronic liver diseases and cirrhosis. I also examine if dis-
ability entitlement rates for the group were also rising in the early 1990s. I calculated various transition
probabilities analogous to transition probability estimates in Table 4 for these two groups. These are
plotted in Figure 6 and also reported in Table 8 for selected ages. It appears that the non-college educated
whites still show lower mortality and disability rates than their non-white peers of the same characteris-
tics.

These estimates do not negate the Case and Deaton (2015) hypothesis because the population considered
here is older 50 to 60 during 1992 to 1993 and the estimates of mortality and disability rates are cumulative
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following this cohort until 2006. Whereas, they estimated the mortality rates of the younger age-group
45-55 in each year from 1993 to 2013, i.e., cohorts comprising the age group 45 - 55 in each year were
changing. Estimation of the model and transition probabilities for the younger cohorts in the HRS data
can shed better light on this issue.
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Table 6: Unobserved heterogeneity bias corrected estimates of Cox regression models with childhood
factors, biomarkers and health behaviors.

1->2 1->3 1->4 2->3 2->4
White 0.040 0.247 -0.945 * -0.135 -0.261

(0.069) (0.288) (0.406) (0.116) (0.146)
Female 0.113 * -0.400 -0.618 -0.104 -0.399 **

(0.052) (0.227) (0.413) (0.105) (0.129)
Childhood SES -0.076 0.061 0.588 -0.100 -0.100

(0.056) (0.254) (0.418) (0.128) (0.158)
Childhood Health -0.005 0.206 -1.480 *** -0.086 -0.711 ***

(0.058) (0.245) (0.375) (0.105) (0.125)
College+ -0.058 -0.902 * -1.389 -0.616 ** -0.531 *

(0.066) (0.412) (0.757) (0.199) (0.227)
CES-D 0.483 *** 1.992 *** -0.812 1.075 *** 0.551 *

(0.116) (0.365) (1.095) (0.168) (0.225)
Total cognitive scores 0.000 -0.064 ** 0.011 -0.030 ** 0.004

(0.006) (0.022) (0.039) (0.010) (0.013)
BMI 0.296 *** -0.102 0.389 0.071 -0.223

(0.051) (0.212) (0.387) (0.112) (0.132)
Behavior: Smoking 0.085 0.112 2.886 ** 0.300 ** 0.811 ***

(0.051) (0.226) (1.022) (0.111) (0.159)
Behavior: Exercising -0.180 * -0.933 *** -0.826 -0.484 *** -0.962 ***

(0.073) (0.246) (0.438) (0.108) (0.128)
#obs 3402 3402 3402 6229 6229
#events 1665 91 30 412 267
theta 0.000 0.502 0.000 0.000 0.000
Chisq 154.84 1.11 0.17 5.86 3.25
Chisq-pvalue 0.00 0.29 0.68 0.02 0.07
R squared 0.022 0.033 0.016 0.023 0.028
logLik -12505.561 -632.136 -201.444 -3354.547 -2184.806
AIC 25031.121 1284.272 422.888 6729.093 4389.612

*** p < 0.001; ** p < 0.01; * p < 0.05.
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6 Policy implications

In Section 5.2, I have shown that childhood factors, biomarkers and health behaviors are all important
determinants of pathways to diseases, disability and death before disability. In this section, I use the
estimated model under the assumption that the unobserved heterogeneity variable is common across all
transitions — Table 9 — to compute quantitative effects of these factors on the risk of various health
pathways, especially on the risk of disability in middle ages for various groups defined below.

Individuals with values of the childhood factors, cSES = 0, cHLTH = 0, College+ = 0 will be referred to
as of type disadvantaged childhoods, and of type advantaged childhoods if these variables take value 1;
individuals with values of biomarkers cesd, cogtot at their mean, and bmi = 1 (i.e., high bmi) as of type
average biomarker, and with health behaviors — behav_prev = 0, behav_smoke = 1, behav_drink = 1,
behav_vigex = 0 — as of type poor health practices, and as of type good health practices if these variables
take the opposite values.

I consider four types of individuals, all having average values of the biomarkers and currently of age 51:
• Type 1: Disadvantaged childhoods and poor health practices.

• Type 2: Advantaged childhoods and poor health practices.

• Type 3: Advantaged childhoods and good health practices.

• Type 4: Disadvantaged childhoods and good health practices.

Consider first the white male population of the above four types. Using the parameter estimates from
Table 6 in Eq. (16), I have computed the predicted transition probabilities 𝑃(𝑡), 𝑡 = 51, ..., 65 for each
population of the above four types. These probabilities are plotted in Figure 6 and are shown in Table 7
for selected ages 55, 60 and 65.
Table 7: Predicted transition probabilities of white males of type 𝜏 and age a, shown as (Type 𝜏 : a),
𝜏 = 1, 2, 3, 4, a = 55, 60, 65.

Type: a 𝑃11(𝑎) 𝑃22(𝑎) 𝑃12(𝑎) 𝑃13(𝑎) 𝑃23(𝑎) 𝑃14(𝑎) 𝑃24(𝑎)
Type 1:
55

0.772 0.968 0.203 0.024 0.030 0.000 0.002

Type 2:
55

0.806 0.986 0.181 0.013 0.014 0.000 0.001

Type 3:
55

0.888 0.994 0.107 0.005 0.006 0.000 0.000

Type 4:
55

0.869 0.987 0.122 0.010 0.013 0.000 0.001

Type 1:
60

0.439 0.821 0.418 0.084 0.112 0.059 0.067

Type 2:
60

0.528 0.929 0.419 0.043 0.052 0.010 0.019

Type 3:
60

0.706 0.973 0.276 0.017 0.023 0.001 0.004
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Type: a 𝑃11(𝑎) 𝑃22(𝑎) 𝑃12(𝑎) 𝑃13(𝑎) 𝑃23(𝑎) 𝑃14(𝑎) 𝑃24(𝑎)
Type 4:
60

0.661 0.935 0.302 0.033 0.050 0.004 0.015

Type 1:
65

0.208 0.648 0.506 0.128 0.163 0.158 0.189

Type 2:
65

0.300 0.863 0.599 0.067 0.079 0.034 0.057

Type 3:
65

0.521 0.952 0.448 0.027 0.035 0.004 0.013

Type 4:
65

0.462 0.878 0.468 0.053 0.075 0.018 0.047

Consider public policies that are able to improve childhood factors and later life behavior. Parameter
estimates in Table 7 indicate that for white males of normal health status at age 51, the probability of
getting onto the disability rolls by age 65, estimated as 0.13 for those with disadvantaged childhoods and
poor health practices (Type 1), is reduced to 0.07 for those with advantaged childhoods and poor health
practices (Type 2), reduced still farther to 0.03 for those with both advantaged childhoods and good health
practices (type 3) and reduced to 0.05 for those with disadvantaged childhoods and good health practices
(type 4).

Similarly, for white males of diseased health status at age 51, the probability of getting onto the disability
rolls by age 65, estimated as 0.16 for those with disadvantaged childhoods and poor health practices (Type
1), is reduced to 0.08 for those with advantaged childhoods and poor health practices (Type 2), reduced
still farther to 0.03 for those with both advantaged childhoods and good health practices (type 3) and
reduced to 0.08 for those with disadvantaged childhoods and good health practices (type 4).

Table 7 indicates similar patterns for the event of death before having disability by age 65.
It is important to observe that the above reductions in disability enrollment rates from introduction of
public policies are after taking into account that the policies would reduce the death before disability
rates, and thus increase the population susceptible to disability incidence after the introduction of such
policies.

The improvements in health practices will also improve the scores of the biomarkers and thus the above
improvements in probabilities will be even larger.

Furthermore, the public policies that turn a type 1 individual to a type 2 individual will also improve the
likelihood of having normal health in the early middle ages from 0.31 to 0.44. This will also additionally
reduce the probability of death before experiencing disability and the probability of experiencing disability
even further.

To examine the effects of the above types of policies for other race and sex groups, Table 8 shows the
transition probabilities 𝑃𝑖𝑗(65) for health states 𝑖 = 1, 2, 𝑗 = 3, 4, by age 65 for each of the four types of
individuals in four gender-race groups. The table shows that the benefits are quite large for all disadvan-
taged groups. With respect to the probability of getting onto disability and the probability of death before
disability by age 65, there are racial and gender gaps: from normal health, whites have higher probabilities
than non-whites, and from the diseased health state, non-whites have higher probabilities than whites.

35



Figure 6: The transition probabilities of white males of four types – top panel from normal health states
and bottom panel from diseased health state.

Probabilities of death before disability are higher for non-whites than for whites from both health states
at any given age. As for gender differences, within each race, females have lower probability of disabil-
ity and lower probability of death before disability than males from both health states at any given age.
The difference in the probability of getting onto disability rolls by age 65 is noticeable for the non-white
male individuals in diseased health states: the probabilities are 0.18 for individuals with disadvantaged
childhoods and poor health practices (Type 1), 0.09 for individuals with advantaged childhoods and poor
health practices (Type 2), even lower probability 0.04 for individuals with advantaged childhoods and
good health practices (Type 3), and 0.09 for individuals with disadvantaged childhoods and good health
practices (Type 4).

Parameter estimates in Table 5 of Section 5.1 show that improvement in childhood SES has significant
positive effects on childhood health, probability of college completion and probability of normal health
in the early middle age. All these in turn have significant effects in lowering the probability of diseases,
disability and death before disability along the middle age health pathways. From policy perspective,
it is important to examine which factors are relatively more important for cSES. To that end, note that
our measure of childhood cSES has polychoric correlations with the component variables (all are ordered
categorical variables, with higher values mean better condition) as follows: family financial situation =
0.59, family moved for financial reason = 0.49, family usually got financial help during childhood = 0.40,
father unemployed during childhood = 0.43, father’s usual occupation during childhood = 0.73, father’s
education = 0.95, mother’s education = 0.84.

From the estimates we see that the most important factors to improve cSES are policies that help fathers
to have steady jobs during their children’s childhood and parents to have higher education. Out of those
two factors, policies that make disadvantaged individuals complete college is more important because it
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Table 8: Probability of getting onto the disability rolls and death by age 65 for various gender-race group
and childhood-types.

group Type 1->1 2->2 1->2 1->3 2->3 1->4 2->4
Type 1 0.208 0.648 0.506 0.128 0.163 0.158 0.189
Type 2 0.300 0.863 0.599 0.067 0.079 0.034 0.057
Type 3 0.521 0.952 0.448 0.027 0.035 0.004 0.013

White
Male

Type 4 0.462 0.878 0.468 0.053 0.075 0.018 0.047

Type 1 0.180 0.585 0.440 0.117 0.182 0.264 0.234
Type 2 0.312 0.837 0.574 0.061 0.090 0.053 0.073
Type 3 0.537 0.944 0.434 0.023 0.040 0.005 0.017

Non-
White
Male

Type 4 0.479 0.854 0.450 0.047 0.086 0.024 0.060

Type 1 0.196 0.717 0.592 0.106 0.150 0.107 0.133
Type 2 0.268 0.889 0.656 0.052 0.072 0.024 0.039
Type 3 0.486 0.960 0.491 0.020 0.031 0.003 0.009

White
Female

Type 4 0.429 0.900 0.517 0.041 0.068 0.013 0.032

Type 1 0.188 0.665 0.540 0.101 0.169 0.171 0.166
Type 2 0.281 0.868 0.634 0.050 0.082 0.035 0.050
Type 3 0.502 0.953 0.476 0.018 0.036 0.004 0.011

Non-
White
Female

Type 4 0.446 0.881 0.499 0.038 0.078 0.017 0.041

Source: Author’s calculation.
Type 1: Disadvantaged childhoods and poor health practices.
Type 2: Advantaged childhoods and poor health practices.
Type 3: Advantaged childhoods and good health practices.
Type 4: Disadvantaged childhoods and good health practices.

has the direct individual effect as it improves the probability one’s attaining College+ education; it also
has the intergenerational effect as it makes their children’s cSES improve.

7 Conclusion

Identifying factors, stages of life and health practices that modulate health developments such as the
incidence of chronic diseases, disability andmortality over one’s life cycle is important for social insurance
programs like Social Security Disability Insurance (DI) and Supplemental Security Income (SSI) programs
and public health programs. Along this line, the paper surveyed the microbiology literature and found
a general consensus for the “developmental programming” mechanism for health development process
over life cycle. According to this view, much of an individual’s later life health outcomes is programmed
at an early stage of life, as early as the prenatal stage, and most importantly right after the conception
stage. The programming is strongly modulated by the epigenetic inputs created by the environment in
the mother’s womb, post natal early childhood stages and health behaviors along one’s life span. The
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genetic predisposition also matters. But epigenetic factors modulate quite strongly the programming for
later life developments in cognitive and non-cognitive health. The most important epigenetic factor is
stress of any kind—psychological, financial, social and chemical—and other significant factors are diet,
smoking, substance use, and exercising. These modulating factors are important throughout life, with
stronger effects imparted in early stages of life.

This paper introduces a statistical multi-state time-to-event life historymodel, incorporating the above de-
velopmental programming mechanism and extending the existing disablement models from the disability
literature. I use the Health and Retirement Survey (HRS) dataset to estimate the model. I use biomarkers
like BMI, CES-D and cognition scores as noisy measurements of internal homeostatic health level, depres-
sion and stress level, a measure of childhood socioeconomic status, childhood health as childhood factors,
college graduation or higher education as a measure of cognitive health, smoking and exercising as health
behaviors. I then study how these variables are related to the probabilities of following various transi-
tion paths through health states of normal health, illness with one-or-more chronic diseases, disability or
death before reaching age 65. Disability and death are both treated as an absorbing state(i.e., final state)
in this analysis.

The set of included regressors does not contain many of the genetic and epigenetic variables that mod-
ulate the heath development process over life cycle. These omitted variables will create unobserved
heterogeneity or frailty differences among individuals of given observed characteristics (i.e. values of in-
cluded variables). In general, the statistical estimates of the coefficients of the included parameters will
be biased. For the two-state (i.e., alive-death) models, there are a few statistical estimation procedures
that correct for the unobserved heterogeneity biases. For multi-state models, however, not much is avail-
able. The paper corrects for unobserved heterogeneity (or frailty) biases for the parameter estimates for
multi-state models, adopting a statistical procedure developed for two-state models, and use these bias
corrected parameter estimates for inference and policy analysis in the paper.

The parameter estimates show that college graduates have significantly lower probability of all transi-
tions. The variable CES-D measuring the level of depression and stress has significant positive effects on
transiting from normal health to acquiring one-or-more diseases, from normal health to become disabled
and from diseased health state to become disabled or die. The other most significant behavioral variables
are smoking and sufficiently vigorous exercising regularly. The smoking has significantly adverse effects
and exercising has favorable effects on the probabilities of most transitions.

The paper finds that the childhood factors, biomarkers and health behaviors are all (statistically) sig-
nificantly associated with the probabilities of following various health pathways; consistent with the
developmental programming hypothesis mentioned above, the childhood factors are found to be most
important, especially the Childhood SES variable which also found to have significant positive associa-
tions with Childhood Health and College+ variables and on individual health states prior to reaching age
50. The statistically most significant estimate is for the coefficient of the variable CES-D, measuring the
level of stress and depression. For instance, a 0.1 unit increase in CES-D (the variable CES-D is measured
in a scale of −0.5 to 0.5) is associated with the probability of getting onto the disability program around
1.22 times higher for one in normal health state and around 1.06 times higher for one in diseased health
state, holding all other factors constant. Out of the health behaviors, smoking has statistically signifi-
cant negative association and regular sufficiently vigorous exercising has positive association with the
probabilities of diseases, disability and death before disability.
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The paper uses the estimated statistical model to estimate quantitative policy effects on the probability of
getting onto the disability rolls and on the probability of dying by age 65 for various types of individuals.
Individuals with low values of childhood factors are referred to in the paper as disadvantaged childhood
and having all high values of the childhood factors as advantaged childhood. They are further divided by
the type of health practices they follow—good health practices and poor health practices–and by their
initial early 50s health status—normal initial health or diseased initial health with one-or-more chronic
diseases. The paper considers public policies that turn a disadvantaged childhood individual into an
advantaged childhood individual, public policies that help individuals follow good health practices or
public policies that can achieve both.

For a disadvantaged childhood individual of normal initial health following bad health practices, the
model predicts that policies that turn him to an advantaged individual with no changes in his health
practices will lower his probability of getting onto the disability rolls by age 65 from about 0.128 to about
0.067. The policies that change him from following bad health practices to following good health practices
without changing his disadvantaged status will lower the probability to about 0.075. Policies that change
both his disadvantage status and health practices, would lower the probability even further to about
0.035. It follows that the policies that improve health practices will also lower the disability entitlement
probability of an advantaged individual following poor health practices by about 0.044.

Improvements of childhood factors involve policies for disadvantaged children to complete college (see
Heckman (2008), Heckman and Raut (2016) and Raut (2018) among others for policies on this) and to
achieve better health involves improvements in healthcare access of the disadvantaged children. The
policies that bring changes in health behaviorswill involve public health education and regulations in food
industry (see, Mozaffarian (2016), Timpel et al. (2019), Budreviciute et al. (2020) among others). The latter
type of policies are relativelymore difficult to design and implement. Even onlywith policies that improve
the childhood factors for disadvantaged children, some of the children will also have improvements in
their biomarkers, health behaviors, and the likelihood of having normal health in their early middle ages.
These will additionally lower the probability of getting onto the disability rolls and the probability of
death in the population.

For individuals in their early fifties in normal health and in diseased health state with one or more chronic
diseases, I have computed the risks of their acquiring diseases, or becoming disabled or dying before age 65.
Unlike the findings of Case and Deaton (2015), the non-Hispanic whites in their mid-ages, 50-60 in 1992,
do not show higher morbidity, higher incidence of disability nor higher mortality. This non-corroborating
estimate could be due to the fact that the cohort in this study is older and the studied period is little earlier,
1992-2006, as compared to the age-group, 40-45, and the period, 1999-2013, for which their findings hold.
Future work using the younger cohorts in the HRS data can shed better light on the issue.
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Appendix A

The system of differential equations in Eq. (4) becomes,

𝜕𝑃11 (𝑠, 𝑡)
𝜕𝑡 = −(𝜆12 (𝑡) + 𝜆13 (𝑡) + 𝜆14 (𝑡))𝑃11 (𝑠, 𝑡) (22)

𝜕𝑃12 (𝑠, 𝑡)
𝜕𝑡 = 𝜆12 (𝑡) 𝑃11 (𝑠, 𝑡) − (𝜆23 (𝑡) + 𝜆24 (𝑡))𝑃12 (𝑠, 𝑡) (23)

𝜕𝑃13 (𝑠, 𝑡)
𝜕𝑡 = 𝜆13 (𝑡) 𝑃11 (𝑠, 𝑡) + 𝜆23 (𝑡) 𝑃12 (𝑠, 𝑡) (24)

𝜕𝑃14 (𝑠, 𝑡)
𝜕𝑡 = 𝜆14 (𝑡) 𝑃11 (𝑠, 𝑡) + 𝜆24(𝑡)𝑃12 (𝑠, 𝑡) (25)

𝜕𝑃22 (𝑠, 𝑡)
𝜕𝑡 = − (𝜆23 (𝑡) + 𝜆24 (𝑡)) 𝑃22 (𝑠, 𝑡) (26)

𝜕𝑃23 (𝑠, 𝑡)
𝜕𝑡 = 𝜆23 (𝑡) 𝑃22 (𝑠, 𝑡) (27)

𝜕𝑃24 (𝑠, 𝑡)
𝜕𝑡 = 𝜆24 (𝑡) 𝑃22 (𝑠, 𝑡) (28)

with the initial condition, 𝑃 (𝑠, 𝑠) = 𝐼 .
Note that Eq. (22) and Eq. (26) are differential equations of the form 𝑑𝑦(𝑡)/𝑑𝑡 = 𝜆(𝑡)𝑦(𝑡), which has the
solution 𝑦(𝑡) = 𝑒𝑥𝑝 [∫𝑡𝑠 𝜆(𝑢)𝑑𝑢]. Thus Eq. (5) and Eq. (9) follows.

The differential Eq. (23), is of the form

𝑑𝑦(𝑡)/𝑑𝑡 + 𝜆(𝑡)𝑦(𝑡) = 𝑔(𝑡) (29)

which is more difficult to solve. Various techniques are available to solve this type of differential equations.
I use the integrating factor technique. Define the integrating factor 𝑒𝑥𝑝 [∫𝑡𝑠 𝜆(𝑢)𝑑𝑢], multiply both sides
of Eq. (29) by this integrating factor and then simplifying the left hand side using the multiplicative rule
for differentiation, one gets 𝑑

𝑑𝑡 𝑦(𝑡)𝑒𝑥𝑝 [∫
𝑡
𝑠 𝜆(𝑢)𝑑𝑢] = 𝑔(𝑡)𝑒𝑥𝑝 [∫𝑡𝑠 𝜆(𝑢)𝑑𝑢]. This has the solution,

𝑦(𝑡)𝑒𝑥𝑝 [∫
𝑡

𝑠
𝜆(𝑢)𝑑𝑢] = ∫

𝑡

𝑠
[𝑔(𝑢)𝑒𝑥𝑝 [∫

𝑢

𝑠
𝜆(𝜏)𝑑𝜏]] 𝑑𝑢.

Dividing both sides by the integrating factor, and utilizing the fact that, 𝑒𝑥𝑝 [∫𝑡𝑠 𝜆(𝑢)𝑑𝑢] =
𝑒𝑥𝑝 [∫𝑢𝑠 𝜆(𝑢)𝑑𝑢 + ∫𝑡𝑢 𝜆(𝑢)𝑑𝑢], one gets 𝑦(𝑡) = ∫𝑡𝑠 [𝑔(𝑢)𝑒𝑥𝑝 [− ∫𝑡𝑢 𝜆(𝜏)𝑑𝜏]] 𝑑𝑢. Now substituting the
original values for 𝑔 (𝑡) and 𝜆 (𝑡), and noting that the exponential term is indeed the already solved
𝑃22 (𝑢, 𝑡) (see Eq. (9) ), we have the solution Eq. (6).

Finally note that given the above solutions, Eq. (24), Eq. (25), Eq. (27) and Eq. (28) are of the form 𝑑𝑦(𝑡)/𝑑𝑡 =
𝑔(𝑡) where the function 𝑔(𝑡) does not depend on 𝑦(𝑡). The solution for this is easily derived to be 𝑦(𝑡) =
∫𝑡𝑠 𝑔(𝑢)𝑑𝑢. This gives solutions Eq. (7), Eq. (8) and Eq. (10).
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Table 9: Unobserved heterogeneity bias corrected estimates of Cox regression models with childhood
factors, biomarkers and health behaviors - common random effect across transitions.

1->2 1->3 1->4 2->3 2->4
White 0.040 0.249 -0.945 * -0.135 -0.261

(0.069) (0.288) (0.406) (0.116) (0.146)
Female 0.113 * -0.406 -0.618 -0.104 -0.399 **

(0.052) (0.227) (0.413) (0.105) (0.129)
Childhood SES -0.076 0.068 0.588 -0.100 -0.100

(0.056) (0.254) (0.418) (0.128) (0.158)
Childhood Health -0.005 0.214 -1.480 *** -0.086 -0.711 ***

(0.058) (0.245) (0.375) (0.105) (0.125)
College -0.058 -0.910 * -1.389 -0.616 ** -0.531 *

(0.066) (0.412) (0.757) (0.199) (0.227)
CES-D 0.483 *** 1.932 *** -0.812 1.075 *** 0.551 *

(0.116) (0.365) (1.095) (0.168) (0.225)
Total cognitive scores 0.000 -0.062 ** 0.011 -0.030 ** 0.004

(0.006) (0.022) (0.039) (0.010) (0.013)
BMI 0.296 *** -0.107 0.389 0.071 -0.223

(0.051) (0.212) (0.387) (0.112) (0.132)
Behavior: Smoking 0.085 0.103 2.886 ** 0.300 ** 0.811 ***

(0.051) (0.226) (1.022) (0.111) (0.159)
Behavior: Exercising -0.180 * -0.913 *** -0.826 -0.484 *** -0.962 ***

(0.073) (0.246) (0.438) (0.108) (0.128)
#obs 3402 3402 3402 6229 6229
#events 1665 91 30 412 267
theta 0.000
Chisq 164.90
Chisq-pvalue 0.00
R squared 0.020 0.020 0.016 0.023 0.028
logLik -12583.047 -655.145 -201.534 -3357.557 -2186.485
AIC 25186.095 1330.290 423.069 6735.115 4392.971

*** p < 0.001; ** p < 0.01; * p < 0.05.
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