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NOTES AND REMARKS

Basic Loncepts:

The thecry of convex sets and convex functions originated in the
early years of this century mainly by Minkwaski,r Fop a finite dimenéioﬁal R
extensive treatment of fﬁé.subject, the reader should refer to Rackafellar
(2). The materials on infinite dimensidhal spaces can be found in any
functional analysis book. But the lecture notes of MorééuL(9) is an
excellent treatment of the;sabject in topological vector spaces of

arbitrary dimension. In this connection, one can see the survey paper

by Klee (11); see Kelley and Namioka for other generalizations.

There are led=tf many probieﬁs'that arise in connection with the
identification of the extreme poinfs of a given convex seé and there is an
extensivp literature in mathematics addressed to this problem for speeific
convex s:ts. See Kothe (10) pp. 333-337. Brénsted (12) tried to extend the .
Krein-Millman theorem and its econwcrsto coﬁvéx functions by using what is

called affine minorants.

We did not have time and sbace to discuss about different types
of convexity. A good account of it will be aVailable in Ponstein (13).

For some more results on separation, one should refer to

Klee (16(a)-(b)~(c)-(d)-(e)).

Differential and sub-difforential Theory

On finite dimensional spaces, Rockafellar (2) deals very
extensively with the subject. Surveys of infinite dimensional results are
contained in Asplund (18), Ioffaand Tihomirov (19) Ekeland and Temam (20).

For the theory of conjugate functions, the reader is referred to
Brgnsteu and Rockafellar (21), Brgnsted (22) Fenchel (23). We mention here

a work of Kutateladze and Rabinov (24) who pointed out ,trat a natural



ianguage of various duality schenes is the language of K-spaces (Banach

algebra). In (24), many analysis and interesting results are noted.

fy s . . n r -
rﬁhnﬂnr For_decomposition thecrem of sub-differentials on W} which
says that under certain general conditions on a convex function, every

x¥ € DF(x ) can be decomposed into

X* = X¥ 4+ X¥ +, . .+ x¥*
o~ %1 T %2 % *p
D S . o
where r n+1 ) .= 1 . > 0, x* 3 . (x S, S (x for definition
< n+l, L ay ) ay » x¥ €3 Si( o) 85 € 5.(x )

of the notations see Thecrem 5.20,{see (17(b)). Decomposition theorems

are helpful to spproximation theory. In this regard, a good reference is

Levin (26).
For some characterisations of Banach spaces on which all continucus
corivex functions are Fréchet differentiable (such spaces are called

Asplund space) see Phelps (27) and for sdme characterisations of weak

Asplund -naces, i.e. spaces on which all continuous ecnvex functions are
Gauteux differentiable see (28).
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to type this with great patiénce and care; I also like to thank
T.Parthasarathy and Students of Indian Statistical Institute who encouraged

me quite a lot by attending these lectures.

June, 1980
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Lecture 1

SO ouR

Convex “ets,Affine Sets, Separetion Theorems, Krein-Milman Theoren

Definition 1.1: A vector space over a field K (also called a linear

space over a field K), is a set L having two bperations - vector addition

and scalar multiplication - satisfying the following: ¥ x,y,z e L; o B € K

(1) x4y g L
(i) (x+y)+z = x+ (y+z)
(iii) there exists 0 g L s.t. x+0 = x ¥ x ¢ L
(iv) Vxel, ﬂ(~x) e L s.t. xt(-x) = 0
(v) X+Y T¢ YK |
(vi) a X eeb
(vii) a (x+y) = ax+ ay
(viii) (o+B)x = ox =+ BX
(ix) (a0 B) x = algx)
(%) - 1x = x.

Note thiae (L, +) is an additive abelian group because of (i) through (v).

In our lectures, we shall take K :fﬁaa

. N
Example 1.2: R over ?&3 C[O,l} over ﬁ2 etc.

Definition 1.3: A subspace of L is a subset M s.t. M itself is a linear

space w.r.t. to the operations of L.

Definition 1.4: A < L is said to be a convex set if whenever x,y ¢ A and

0<ax 1, then ax+(l-a)y ¢ A and A €XL is said to be affine set if
x,¥Y ¢ A and g ¢ Hz ==> o x+(1-q)y € A.

Note that an affine set is also a convex set;but not theother way.



Definition 1.5: Let L and M be two linear spaces over “2 « A

transformation T : L =+ M is said to be linear if T(ax +Ry) = a¥(x) + @T(y)
¥x,yelanda, B effg - If M= R, we shall call this linear

transformation as linear functional.

Definition 6. A transformation 7T s L = - M ’( L,;M are linear spaces

gver &) ic said to be affine transformation if

T(ax + (1-a)y) = aT(x) + (1-a) T(y) ¥ x,y el and a eq -
Note that = mapping which is linear is also affine but not the other way.

Proposition 1.7. Let L and M be linear spaces ; over @2 and

T:L - Mbe a transformation.

T is affine <===> T(x) = A(x)+b for some linear transformation
A:L+> Mand some b ¢ M.
Proof: {[===>] : Suppose T is affine. Set b = T(0) and A(x) = T(x)-b.
Note that |
AGEx) = TEx+(1-4) 0) - b = X T(x) + (1-o -1) T(0) = = A(x»)
Alx+y) = 2 A(Z%X) ’

2 (5 7(x) +% T(y) - b)

T(x) ~b+ T(ly) -b

A(x) + A(y)

Hence A is linear.
[<===]: Let x,y e L, a e{l¢ - Then

Tox+(1-a)y) = GA(x) + (1=a) A(y) + (a+(1-0)) b = aT(x)+(1-c)T(Y)

Q.E.D.



Definilion 1.8: Let N be a proper subspace (affine subspace) of L.

N is said to be maximzl proper subspoce  (maximsl affine proper subspace)

if whenever K is 1 subspace (affine subspace) of L s.t. N< K C L,
then either K = L or K = &,

Definition 1.9: Let f be a linear functional on L. Then the “subspacc"

£

N, = {x: f(x) = 0} is .called the null space of f.

Proposition 1.18: N is maximal proper subspace of L <=z> N is the null space

of a non-trivial linear functional.

Proof: [==z=>7: Suppose N is a maximal propcr subspace. Then there exists
)Ié- N in L. Set K = {ay+x : xeN, oefle }. Note that K is a lipear

subspace with.N as proper subspace. So, K = L. Define the functional

flay+x) = o ¥x eNoand aclR

Note that f is a non-trivial linear functional witth = N.

f

1 <:;;;] 2 Supﬁcse M is the null space of a non-trivial linear
functional f and let ¥ ;ﬁ N be a linear subspace. We shall show that
K=L. 4y eKs.t. fly) = o #0 i.e. f(ﬁ) = 1. let y/a = youl»Observe
that  {gy +x : B eR > x e N} O K & L . We claim that |

{R YtX s BeR s Xe N} > L for, let z ¢ 1; define x = z-f(z).yo° So

f(x) = f(z) - f(z) f(yo) =0 ===>x¢gN ==>x + f(z),y0 €

{By+XEB€&9X€N}_

Thhus K = L.
Q.£.D.

Remark 1.11: So there is a 1-1 correspondence _between maximal proper
subspaces and null spaces of non-trivial functionals on L. Something more
is true; in fact, a maximal proper subspace is closed if and only if the

corresponding f is continuous (Topology is norm-topology).



- : R . . i . . . s s e d ~
Werning: € is 1linear zg> f,.is, continuous unless L.is fipite dimensional.

' The follewing is' o chiezacterisation of the. meximsd proper. afFinet r
~subsprges.

Propgsition 1.12: H is maximal proper affine subspece of L <==> H = M+a,

M is some maximal proper subspace of L and a is some vector in L.
Proof : Straightforward.

Definition 1.13: We define a hyperplane H as a maximal proper affine

subset of L.

Question: Can we represent hyperplane H im terms of linear functionals as
we do in naz, HQB by 8,%; + X, = b;alxl + ayX, + a;Xy = b respectively?

The following gives the positive answer.

Proposition 1.14: 4 is a hyperplane in L <==z=> H = {z ¢ L : f(z) = &}

for some g € ﬁQ and some non-trivial linear functional f on L.
Proofs: [===>] Suppose H is a hyperplane in L. By definition, then H is a
maximal groper affine subspace of L <==> H = M+a, M is scme maximal proper

subspace of L and a is some vector in L (by Proposition 1.12).

===> M = {xel : f(x) = 0} for some non-trivial linear functional f.

zz=> H={z=x+a €L : f(z) = f(a) = o} , where o = f(=2).

[<===] :Select a z € H and fix it.
Define N = {x e¢L : x = z—Zé, z ¢ M}. Note that N = null space of ¥ and
hence a maximal proper subspace of L and H = N + z_. Q.E.D

Corollary 1.15: We know that there is a 1-1 correspondence betwecen linear

functionals f's on fa " and the vectors b & “th In ﬂan we can charactcerisc
‘ . RV it

the hyperplanes by H = {x E,Qn | <x,b> = a} for somgAb £ ﬁln and ¢ ¢ ﬁg

n .

where <x,b> = } X4 bi <z=> H is a hyperplane. Moreover, every hyperslane

izl
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. n . . .
in (R can bo represented this way with b and o unique uptc a common nor-

zero multiple. Tha above vector b is called the normal to the hyperplane H.
Note that every other normal to the hyperplane H is either a positive or

negative scalzre mulbiple of b,

3

Exercise 1.15: 1In @“; M={x e p": Bx = b} for some b “eiRm and B is

some mxn real matrix <===> M is an affips set in ﬁi1° [Hint: Ml’MZ affine sets

z==> Ml(} M2 is affine. ]

Remark 1.17: (1.15) and (1.16) are true for any finite dimensional real

vector space.

Definition 1.18: (1) By the term half spaces determined by the hyperplane

H(f,a) we mean the sots {zel: flz) xa} and {z €L : f(z) > a}.

(2) One says that H(f,a) separates U and V~two subsets of L-if U and V

e

lis in opposite half spaces determined by H(f,qa); and

(3) One says H(f,a) strongly separates U and V if there exist

Gy 50y € R ste @y <a<oy ~and‘bmthvﬂ(f,”&l)-and‘H(f,&&Jraeﬁspaté"
U and V.

Remark 1.19: Observe that strong separability requires U and V to be
disjoint. The natural question arises: Is disjointness sufficient for it?
The answer is, in general, no. Following is an example to justify it:

Example 1.20: Let L = HE?

U= {(rys) | >0, s>1/r}

1]

<
1

= {{(ry8) | >0 s 5_-1/}}

Note that U and V are disjoint. But strong separation is not possible

Figure below gives the geometrical idea.



Figure 1.1

Any topological statements to be made here-after will be norm

topology, unless otherwise mentioned.

\
The following theorem gives the sufficient condition fcr the existence

of strongly separating hyperplanes for two sets U and V in L:

<8
Theorem 1.21. (Strong Separation Theorem). Let U be,closed convex set

disjoint with a compact convex set V, then there exist a hyperplane H(f,ad

separating U and V strongly.

Proof: See [a].

Let U be a set in L. Then denote by

u° = larget open sct contained in U
= {x e U: 3 an open set containing x and contained in Ul
and U = () C, where intersection is taken over all closed sets

C that contain U.

It's easy to varify that if § is convex than v® and V are also convex. The

aS
following is knownASeparation theorem,



Theorem 1.22: (Separation Theorem); Let U and V be two convex subsets

P

of L with U° # ¢ and v (Y V= ¢ . Then there is 2 (closed) hyper plane

that separates U and V.

Proof: TFollows from Hahn-Banach Theorem: See (3). The figure below gives

the geometrical content of the theorem:

H(f,a)

Figure 1.2.

a

Definition: 1.23: Let U be a convex set in L. We say that = hyperplane H

supports J at X, ¢ U if %, € H:ad U is a subset of cne of the half spaces

determined by H

Coroliary l.24: (Support Theorem): Let U with u” # % be a convex set inL.

6]
ot
X

Let X, € U—UO. Then there is a (closed) supporting hyperplane H for U

Proof: Take V = {xo} and U = U and appeal to theorem 1.22.
For X5 X, € L, let us denote [xl’XQJ = {o xl+(l~x) X, 0 <a <1}

Definition 1.25: Let K be a non-void subset of L. A set M K is said *o

be extremal subset of K if an interior point of [xl’XZ]’ g X, lies in

x12%

K ===> xl

called an extreme point of K.

sX,s € M. An extremal subset of K consisting of single point is
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. Point B, A ABC are extremal subsets

the cenvex set K = ABCD. Furtherrore

the set consisting <f pcint B is an

extrme point of K.

Figure 1.3.

Example 1.26 (1) Let K = [a,b], in @ . Extremal subsets are : K, tal 5, {b}.

Furthermcre {a} , {b} are the two extreme points.

2
(2) K=A-= in ®
b bA

C
Extremal subsets are : K,[a,bl], [b,cl, [a,c], {a} , {b} {c}

extreme points ave : {a} , {b} {c}.

) 3
(3) K= 82 = closed ball in ",

Extremal subsets are : K, {x}, xe K = K.
Extreme points are : {x} , x e K - K°.

Proposition 1.27: All ¢ , A S2 and their finite dimensional analogues

are compact and e¢onvex and they have extreme points. Any point in these sets
can be written as the suftable convex combination of extreme pcints.

Proof: See ~ Naimark (1).

Remark 1.28: In infinite dimensional linear space analpgues of above sets

need not be closed.

Define convex hull of E by smallest convex set containing E.

Theorem 1.29: (Krein-Milman): Every non-void compact convex subset K of L

contains at least oneéxtreme point.

Proof: See Naimark (1) for a proof,

Corollary 1.30: Every above type of K(i.e. compact convex)is the closed convex

hull of its extreme points.



LECTURE 2

Convex Functicns

In this lecture we do not need any topology on the linear space L.

Definition 2,1: Let U be a convex [convexity is needed for the definiticn]

set in L. A functional ¥ : U — ﬁ? U {«} is said tc be convex if

¥Vae [0,1], x,y e U, f(a x + (1-a) y) < a f(x} + (1-a)E(y).

Definition 2.2: (1) The effective domain (or simply domain) of £ is the

set dom £ = {x € U : f(x) < =},

(2} The epigraph of f is the set

E = {(x,y) e[J)(ﬁQ.: xelU,ye ﬁzand y > f(x)}.
The following is the characterisaticn of convex -functions in terms of
convex sets,

Proposition 2.3: Let U be a convex set in L and f be a functional

on U, Then f is convex <F—‘\ Ef is convex.
Proof: Straightforward,

2.1 SOME PROPERTIES OF bONVEX FUNCTIONS

Prcposition 2.4: Let U be convex subset of L and £ be a convex functional

on U, Then dom f and {x ¢ U : £(x) < a} are convex, where o eTQ .
Proof: Immediate.
Remark 2.5: For continuity properties and for scme differentiability

properties see. the subsequent lectures.

Definition 2,.6: One says that a convex function f is proper ifth ¢

Exercise 2.7: Let 1.==ﬂ2’and U =§? . Show that the following functions

are proper convex.

(1) f(x) = e - w<aq<ow

(i1)  f(x) = xP if x > 0

u
8
-
b
A
o

(iii) £(x)
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2.2 GENERATION OF CONVEX FUNCTIONS

Many operations on convex functions preserve convexity. In this

section we investigate a few such.

Proposition 2.8: Let U be a convex subset of L, f : U ~RU {o} be ccnvex, and
¢: g U{x} »R U {=} be convex non-decreasing with $(«) = =. Then h = ¢of is

a convex functional on U.

Proof: Let x,y € U and 0 < A <1. Since f is convex, we have

F(ax + (1-2)y) < A £(x) + (1-A)f(y). Now apply ¢ to both sides cf this

inequality and get the result. 0.E.D

Proposition 2,9: If fl and f2 are proper convex functicms on U then for

A 0, A f_. + A f_ is convex.

e 2 117 Moty

Proof: Trivial.

Proposition 2.10: Let I be any index set and fa for each eel is convex on U
then f(x) = sup {f (x) : ae I} is alsc convex.
Proof: Straightforward,

Proposition 2.11: Let fl,f2

,...,fm be proper convex functicns on U a convex

subset of L. Then following are also convex function on U:

i

(i) f(x) = inf {max {fl(xl),...,fm(xm)} e x}

1

(ii) g(x)

inf {(flki ot £ Am)(x) : Ay 20, ¥, and Apteset xm=1} _

(iii) h(x) = inf {max {(Alfl)(x),...,(Amfm)(x)} : A, >0, ¥, and xl+...+xm:;}

i i
(iv) k(x)

1

inf {max {Alfl(xl),..., memxm}},

where 'inf' is taken over all representations of x as a convex combinaticn

R 2 AK, + eee + AX .
11 mm

Prcof: See R.Rockafellar (2).
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LECTURE 2

Continuity of Convex Functions

3.1. Introduction

In this lecture we shall explore some ideas related to the continulty
of convex functions on . NLS. Convex function—of one real variable, is always
continucus. The result is not true for functions on infinite dimensicnal
vector spaces; however, any convex function on an opeﬁ subset of RQF is
always continuous. Then, naturally, one would like to ask : what is the

sufficient condition for the continuity of a convex function cn an open

subset of a NLS? We shall investigate all these.

3.2 Continuity through restriction on f. L will be understood as NLS
unless otherwise stated.

Proposition 3.1, Let U be an open set in L and £ : U > GQ be cenvex. If F

is bounded from above in a neighbourhcod of one point X, € U, th'n it is
locally boundedy i.e, each x € U has 2 neighbourhood on which £ is bounded.

Procf: Lee A.W,Roberts snd D,E.Varberg pp. 91-92.

v

Definition 3.2: A function f defined on an” open subsct of L is said to be

A
locally Lipschitz if for each x € U therc c¢xists a neighbourheod Nc {x) and

a censtant K(x) s.t. y,z ¢ N (x)
==>  |f(y) - £f(2)] = Kx)||y-z|}

and said to be Lipschitz on V ¢ U if fng,Aindepéﬁdént of x s.t.

£55) - #2)] < Klly-zl]  Fy.zev.

Proposition 3.3: Let’f'Eaﬂéohvéx on an opeﬁ set 8 in L. If £ is bourdaed

from abcve in a neighbourhcod of one peint of U, then
(i) f is locally Lipschitz in U,
(ii) f is continuous on Uj; and

(iii) £ is Lipschitz on any compact subset of ¥,
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Proof: Prcposition 3.1 ==> f is locally bounded. So, given X, € U, we
can find a neighbcurhocod N2‘(x0) s.t. f{x) is becunded in this neighbourhood

say by M. How, note that £ is Lipschitz on Ne(xo).
(1) ==> (ii) trivially.

To prove (iii). Let K& U be 'comp"a‘ct».--...(i)‘ ==> ¥ x e Uj 3 open

neighbourhood N (x) and X(x) s.t. [£(w)-£(y)| < K(x)l[w-yll# w,y e N, (x).
x X

Note that {Nr (x) | x ¢ U} is an open covering for K and hence there is a
.

finite sub cover, say, {Nr (xr)} . fefine

1

K = max {K(Xl),..., K(Xn)}
and note that ¥ 1,y ¢ K, one has

]f(x) - f(y)l < Klix—yll
GC.E.D.

Exercise 3.4: Let f be comvex on the opéﬁhsét‘iﬁ(zw¢sg, Then f is Lipschitz

on every compact subset of U and continuous on U.

Exercise 3.5: A convex function f: {a,b) -+%2 is absolutely continuous

on any closed subinterval of (a,b). For several suggestions on the extension -
of the notion of absolute continuity to function of several variables. In

Conbexl :
the cemmectten of convex funqtiogbsee Friedman (1940).
A

3.3 Continuity through restrictions on the underlying space.

Definition 3.6: A function f : U -+§Q'is said to be lower semicontinucus

at x €U L if, given e> 0, 3 N(xo) s.t. ¥ x € N(y), one has
f(x) > f(xo) - €.

Proposition 3.7: Let U be cpen subset of a Banach space L and f : U +{R

b2 lower semi continuous. Then f is continuous on U.
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Proof: Same type of argument will do as in Proposition 3.9.

an affine function 4 : L > [ s.t. A(xo) = f(xo) and A{x) < f{x} ¥ x ¢ U,

Propositicn 3.9. Suppose f : U +{f¢ has coptinucus support zt ezch point
of o convex cpen set U in a Banach space L. Then f is a continucus convex
tfunction,

Proof: OSee A.W.Roberts and D.E, Varberg, pp. 109.



LECTURE 4

Differential Theory of Convex Functions

4,1 Introduction

In this lecturs, we shall discuss what is differentiatior of a
mapping from one normed linear space to encther normed linear space. We shall
mention different types of differential concepts and their inter-relotionships.
These concepts and results will be useful in studying extremum prchblems «f
convex functions under differentiability assumption and -under without
differentiability assumptioﬁ. We shall deduce some interesting differertial

properties possessed by convex functions.

4.2 Different types of derivatives

Let (L,|}s]]) and (M,]]+]|) be - the ncrmed linear spaces.

Definition 4.1: Let f : L - 32 U {»} be any Ffunction. Let € vidom

b

e

v € L then .the one sided directional derivative of f ot x_in the directicn v is
(&
f(x + av) - f(x )
o °

)\.

if it exists ( += and -* are allowed as limits); and the twe sided directional

derivative of £ at X in the direction v is

Flx '+ Av) - £f(x )
et [¢]
A

f'(xO,V) = 1lim
A+ 0

if it exists.
Note that when f'(xo,v) exists, one has f‘(xc,v) = -f'(xo~v)
J

The following figure may help tc visualisc the above concepts.
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Special Case 4.2, Let L = g?, and v be ane from i_el’ s ...,;eng , the
standard basis. Then the corresponding directional derivatives ars dencted
df i . . .
by'igz— (xo) or by f (xo) when v = e, and this is called the i-th partial

derivative of f at e

Remark 4.3: FProm the study of functions of one real variable, we have
learned that the existence of caesided derivatives are not encugh to ensure

<

the smoothness of the curve at a point. E.g. f(x) = }X\R‘EZEQ and ot the
point x = 0. So, the existence of twé §idéd derivative 18 necesziry to ensurc
smoothness of the graph at a pcint in the sense of making it possiblie to
“approximate” the function in a very small neighbourhdod of the pOih?igy a
function of the form A(x) = f(xo) 4 m(x—xo). The concept of above type of

e -1a 4 s et 1isq s 2yt 3
smeothness gives rise a concept of differentiability called Frechet derivative

defined below,

But for functions of several variables cven the cxistence of the- — -
directional derivatives in #ll the directions at a point R e is not encugh
to ensure the smocthness of the function at that point in fhe sense stated
above. TFollowing excrcise is to justify this.

X

Exercise U4.4: Let £(x,y) if (x,y) # (0,0)

p)
X +y
0 if (x,y) = (0,0)

H

Show that at (0,0) all the'directional deriveatives exist yet £'(0) [defined

below] does not exist,
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Question 4.%: What is the sufficient condition under which f'(x) exists?

For partial answer, see (¥) of remark 4.l1lu,

Definition 4.6, Let U be an open subset of L and £ ¢+ U > M., We say f is

Frechet differentiable at X, € U if there is a linear transformation

T:L » Ms.t, for all h ¢ L of sufficiently sgmall norm, one has
f(x th) = £(x ) + Th +|[h]| e(xsh)

where ||e(xo,h)|| + 0 as ||b]] + 0. This linear transformation, if it

(&)

exists, is called Fréchet derivative of f at x_ and is denoted by f'(x ).
Sometimes we denote it by D f(xo). Equivalently, if there exists a linear
transformation T : L » M s.t.
s - -
[If(xo h) - £(x ) TH |

1lim =0
h >0 [|n

-
]

Then f is said to have Fréchet derivative at - If f is differentiable

M)

t every ®x ¢ U, Then f is said to be differentiable in U. One can show

easily (the following exercise) that when such a linear transformation exis
it is unique.

Exercise 4.,7.: Show that T in the definition 4.6 is unique whenever

it exists.
Remark 4.8: Let [3p (L,M) be the set of all linear transformations from th

normed linear space L to the norm linezar space M, and let us denote by

T3,

e

B(L,M) the class of bounded (equivalently continuous) linear transformations

from L to M, Then f' is nothing but a mapping

f“ + U > Lin (L,M).
Note that for X, € U, f'(xo) may not be continuous. Natural question arise

when is £'(U) < B(L,M)? The following thecrom: answers it.

e

D oe
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Warning: We are not talking aﬁcut the continuity of the differertial
operator f'.
Theorem 4.9: f'(xO)EE B(L,M) <===> f is continuous at-xo.

Proof: [ ===> ] suppose f'(xo) e B(L,¥). So there exist a e[l s.%.

||f'(xo)|f <a Now, by definition of f'(x ) for h of small norm in L, we have
X o '

E(x th) = £(i)) = £'(x )b +|[h]] elx_,m)

[|£Ce +h) - £Cx ],

I A

e, Tl + Hnlg HeG ]

A

Cre et DI}
So whenever {:h|| = 0 Ilf(xo+h) - f(xo)|| > 0, Hence f is continucus at v

[ <===] Suppose f is continuousiéﬁmﬁogwhsﬁppose f'(xo) enists,

Let hn be very near to 0.

no!

e+ he) - £(x ) = £1x ) B +|[h [ elx o)
i.e.
HE ) bl < HEG ) = Fed g ] [ex o)

L. N

> O as E; dei——> 0, Hence f'(xc) is continuous at 0 and

So, f'(x )h.
o’ N

thus continuous ¥ h ¢ L.
QLT

Remark 4.10: Theorem 4.9 is relevant if one can produce an example of a

function which is not continuous at some point but differentiable.- One such
function is am given in example 4,11, In this connection, we should note that
since Lin (L,M) @ B(L,¥) if L ané M are finite dimensional, so the differentia-
'bility of £ at a point gmplies continuity.

¥

Example 4.11: Let L = &, = {x = {x.;¢? ) |Xi| < =} with the "norm"
L4 - - N
i=1

2
H {xi}'§= sup {{xi} s 1=1,2,000) . Let T : 2,

>$2be defined by

T({xi}) = z 2, It is ecasy to check that T is linear., T is not bounded, for

1
. L4 n~'l
consider the sequence {i'; s
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0 = {1,1,... 1, 0,0,....}

T %]

-~

sollu I = 2 anal]t ] =m S0 [fr]ls sup =2 s e 50 T s nor
Xy

coutinuous . But T'(xo) = T,
So this is an example of a function not continuous at a peint

but differentiable.

The following proposition relates Fréchet derivative to
directicnal derivative.

Proposition 4.12: Let U be open in L and f : U — qaa. If f has Fréchet

derivative at xoe; U then f has ’‘all two-sided directional derivatives and
' . = £
£1(x 3v) = f (x ) ¢v)

Proof: By definition
f(xo + Av) - f(xo)

f'(x ’v) = 1lim
° A0 o
£1(x Mav) +}|avl]| elx , Av)
= lim 2 Y 2
A= 0

= f'(xo)(V}+ 0. .
A Q.E.D.
Henceforth, whenever we talk about derivative of f, we assume f is continuous
unless otherwisec stated. DNote that f'(xo) as X varies over U can be thought

of as a mapping £' : U e B(LyM). Domain of f' is the set of those x& U. .-

for which f'(xo) exists and bounded. This mapping will, hencefcrth, be called

"differential operatory The question that naturally comes to one's mind:

Is the differential operator continuous w.r.t. the induced norm topology on

B(L,M)? In this connection see Remark 4.1u,

Definition 4.13: If for a f: U-—¥ M, the differential operator f' is

continuous we say that f is of class Cl(U) or simply ff€~C} .
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' : . n m n.m
Remark 4.14,  For f :“2 - E? , we can take any norm for B(“R ,“2)
(since for finite dimensional vector spaces any two norms are "equivalent" -
i.e. induce the same topology). A convenient way of giving a norm to

f'(xo) is to consider the standard basis and define

Bfi
HEr ] = max | 52= G )
1,] J )

af .
ll.1] is 2 norm in B(ﬁin, ﬂg). Whenever all partial derivatives 'ﬁ;i

exist and are continuous on U, then f' exist on U and by above choice of
the norm, f:G-Cl(U). (%) So, f efcl(U) whenever all partial derivatives

of .
i . . .
o exist and are continuous on U.

4,3 Higher Order derivatives

Suppose © E’Cl(U). Note that B(L,M) is & norm=u Tinear space,
' ' y’
so we can talk about the differentiability of f': U-—3B(L,M). If f" = (f'")

exists at a point Xle-U then f”(xo) will be an element of B(L,B(L,H))

which ic unique. Such an operatcr is called the 2nd order derivative of f

at x . If, moreover, f'": U —3 B(L,B(L,M)) is continuous then one says that

2 . 2 . . o y e N
f &C°(U) o £ is of C -class. in the same way one can define the v-th order

(r)y,

derivative of f (denote by f But observe that f(r)(xo) will be an

elemert in a cbmplicated space like.

B{L,B(L,... B(L,B(L,M))...)),

which is very cumbersome to deal with. But life is not so bad. We shall

establish a linear isomorphism between the above space and a simpler space

0 ;
namely the space r-multilinear mappings as defined below.
/\ .

Definition 4.15. Let L, Ll’LQ""Ln are nt+l linear spaces. A map

M Ll X L2 X ses X Ln-~) L,




..
»
~
.

which ‘3 linear in each factor separately (i.e. when all the components
except one are held fixed, it is linear in the independent variable), is

called un n-multilinesr mapping.

Example 4;16: Let L, = L2 T eee = Ln =L = ﬁQ . It's elementary tc check
A
that the mapping (xl’XQ""’xn) 3 XKy el B is & n-multilincar map.

Example 4.17. Consider nxn matrices as elements from ‘pnx {TF X eese X ®
J = 4

And consider the mapping

Mo nzn X iEf X vee x.KE? > R defined by
M(.) = det (L)

Then M is an n-multilinear mapping.

. - 1]
¥ vee + & al A.l,1

1 . s = . 2 = A =
{Hint: Use the‘fuct.dat(A) a.. A a1

11 A1t Ay Ay
l_l.‘ .(; - ] _' f 7E
where a~ is the first column of A aznd A'.1l = (All’AQl""’ “nl) vector

- E = Ji > he la 1 a
of co‘factors (;ll,..., “nl)' Note that M is not llnegr{I

Now we shall prove the linear isomorphism between the above

said spaces for r = 2, For general case also the same preof goes through.

Let M2 (Ll x L

05 L} be the "linear space" {with pointwise addition and

scalar multiplication in the natural way) of continuous bi-linear maps

from L, x L, to L, where L., L

1 9 L are NLS.,

1’ 722

Theorem 4.,18: There existsa linear isomorphism between M2(L1 ¥ Lz, L) and

Proof: Let us construct a mapping ¢ @ B(Ll,B(LQ,L)) - MQ(L1 X L?, L) by
A + ¢(A) = R, where A is defined in the following way: for given

X, € Ll’ A will associate an element say A(xl) in B(LQ,L). Now, let
xze; L2 be taken to A(xl)x2 in L define A(xl’XQ) = A(xl)x2 as obtaineéd by

the above way.
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Claim 1: A ¢ MQ(Ll x L,L) which is trivial to varify.

4

Claim 2: ¢ dis linesr. For, let A ,A.c B(LlaB(LQ,L)) and o € R

1772

A“ A b = '\x VI" ¢ \‘. =
,(A1+A2) \blfﬂQ)(xl/ 2y (Al(xl) + AQ(xl) X,
= Al(xl)x2 + AQ(Xl)XZ
= Al + 9 = ¢(Al) + ¢(A2)
Similarly, ¢(cA) = ag(A).

Claim 3: ¢ is 1-1 and onte. Varification is pathological.

Claim 4: ||A}] = |1e(a)]]| for,

ed] = 8up ol ooy Haogll
LR B TR S TP ;
[ 17 0 [l 0
=, 117 0

Q.E.D

Remark 4.19: Because or above theorem, the 2nd order derivative of a wop

f : U-~—9 M can be identified with a-bilinear cperator from.L x L —3 M.
(r) i

Similariy f s an r-~nultilinear mapping L X L X .ee X L —3 M. The

following theorem supplies even a simpier form for 2nd order derivative for
. I . . ? ;

& : Le V) = Z 8DE a

a function f: T mz in terms of matrix. ““tgf}n the space of all nxn

real matrices.

es . n n
Prepositi 4,20: The 3 "linear i ism" between M TS 5 s Tt
PCPOS on 20 here is a "linear isomorphism!" between PQ( ]Q o X ﬁZ’ ﬁz)
andcﬂﬁxf

Procf: Construction : Let Ejel,..., en% be the standard basis for g;}n

n

and let h, k & I‘Q . Then there exist unique hi, kiem, , 1=1,2....,n s.t.

h = hl €yt eee t hn e,

k =k, e + .00tk

n n
Let Mé—MQ( rk‘ xR “‘2)' Then
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i
-~

3]5) = l\'(h VAG Faoet h'nenak) = Z hi M(e‘i’ k

ceitk e )
1%, kn&:,

lel+ T

n
igl jél hok Mlegsel)
Z X hi kj aij’ 5ay,

i=1 j=1

Y
&
B
j&8)

iy
:

where aij = M(ei,ej), j,i = 152,...,n which are independent of Xk

1}

Let A = ((aij))mxn' Define the mapping

¢: M (L, M) > ¢ﬂ7n by

M > $(M) = A.

It's pathalcgical to verify that ¢ is a linear bijectionm. cp is continuous
owing to the fact that if is a linear map from one finite dimensicnal NLS

to another finite dimensional NLS, Q.E.D

Exercise 4.21: Let f : ﬁQri,g ﬂQ: syppose f'"(x) exists at x. Show

that £"(x) has the associated matrix.

H(x) = | 32f(x) 32£(x) "]
- 3K, 8% Tttt dx. ax |
1 1 T n
3
a2F(x) 92F(x)
dx  9x s ox 93X
b n 1 n n ]

H(x) is called the Hessian matrix of f at x.

Definition 4.22: A € M_(LxL,M) is said to be symmetric if A(h,k) = 2A(k,h)
2 ittt

hE 4

¥ k, h € L; and for M =’R? it is said to be positive definite {resp.

non-negative definite) if A(h,h) > 0 (resp. > 0) ¥ h ¢ L.

$
The following Theoremkvery useful.

Theorem 4.23: Let £ : U > M be of Cl class. Then f"(x) is symmetric

whenever it exists.,

Proof: See (3)
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Theorem 4.24:  (Taylor's Theorem): Let U be asopen convex subset of L,

f: U= g be Cl(U) class and £"(x) exists ¥ x € U. Then for any
Xy X & U, there is an s &= (0,1) s.t.
£(x) = £(x ) + £'(x dh + = £'(x_+sh)(h,h),
o] o 2 o
where h = »-x ,
o .
Prcof: See K.R.Parthasarathy and Rajendra Bhatia, 152-153, whare they

give a proof for more gencralized version of it.

L.4 Convex Functions and Different Derivatives:

In this section we shall present some theorems characterizing
convex functions on (L, ||.||) with the help of first and second order
verivatives.

Theorem #,25: Let U be an open convex subset of (L, |}.

|) and let
£ U -+‘ﬁ2 be convex and differentiable at x_ e U. Then ¥ x e U.
- ' -
f(x) lf(xo) > f (xo) (x xo)
Moreove: , Suppose f'(x) exists ¥ x ¢ U thén‘V’x,ide£m§~, )
£(x) -£(x ) > f‘(xo)(x~xo) <===> f is convex on U.

(Strict inequality for strict convexity).

Proof: Suppose f is convex on U and differentiable at i € U Then for
A e (0,1) aund x € U,

f((l-A)xO +Ax) 2 (1-2) £(x)) + Af(x)

i.e. £lx  + M) -f(x ) < AME(x_th) - £(x,), vhere h = x-x .
i.e. £(x _t xh) - £(x,)
. T < E(x th)-f(x)
i.e. f(xo+ Ah) - f(xo) - f'(xo)(lh)
‘ < f(x _+h)-f(x )-f'(x ) h
A - o o ¢
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Letting A - 0 establishes the lst part of the theorem

2nd part: <=== is already proved. For ===> part, let Ris Xps € U.
set x =t ox, + (1-t)x,. Want to show f(x_ ) < £ f(x,) + (l—t)f(xQ)
a4 < o - PR

Note that  £(x )
o

it

(< ) £ 1 - - (‘ -
f(“J; + £ (Xo) (t(xl «O) + (1 t)\xz xo))

1

- : TV . “( ~ 1 ¢ - C Tt 3 F F'{x Y% -x
) } f(xo) t(f(xo)+f (xo)(xl Xo)) + (1 t)\f(xo) + f (_O,LYQ \O))

I A

t f(xl) + (1-t) f(xz) bv hypothesis.

- Q.E.D.

Remark 4.26: The first part of the abOVé"fhedréﬁwﬁ.QS can be made weaker

in terms of directional derivatives (cf. theorem ). We have, for convex
functions of ome real variable, a result that f'"(x) is monotonically increas-
ing function of x. Can't we have an analogue of this: yes, as follows:

Definition 4.27: We say that amap F : L - Lin (L,’ﬂz ) is monotonic

increasing if ¥ x,y ¢ L, we have
(F(x) - F(y))(x-y); > 0.

and strictly monotonic increasing if ¥ x,y e L, x # y

(F(x) - F(y))(x-y) > 0.

Note 4.28: This cencept will be further generalized for 'relations'! in the

next lecture. See definition 5.7.

Theorem 4.28: Let U be open convex subset of L and let £ : U 4-“2 be

continuous and differentiable on U. Then f is convex on U <=>f'(eB(L, [i))
is meonotonic increasing on U.
Proof [ ===>] part follows from theorem 4.25,

[<====]: Suppose f' is monotonic increasing. Fix x,y & U arbitrary.
We want to show for a e (0,1), £(ax + (l-a)y) < a-f(x) + (1-a) £{y).
Define 9: [0,13 > |K by

d(a) = flox+(l-a) y).
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Cladim 1: ¢'(o) is menotonic incizasing, for, let 0 < a, < o, <1 and

-1 2
u, T o + (1-al)y: u, = X +(l~a2)y. So, u,-uy = (02- ul)(x-y) and
0 < (f'(uy) - £'Cudluymuy) = Coy = w)) (£1(a,) - £10u;)) (x~y)
===> f'(ul)(x—y) 5_f'(u2)(x—y).
===> ¢'(ay) = £1(u )(x-y) 2 £'0u))(x=y) = ¢'(0,) (by chzin rule).
Hence the claim 1.
laim 1 ===> ¢(a) is convex.‘ Thus

flax+ (1-a)y) = ¢(a) = ¢(a.l +(1-6).0) < a¢(l) + (I-c) 2(0)
< af(x) + (i-0) £(y)
Q.E.D

The following is a characterisation in terms of 2nd order derivative.

Thecrem 4.30) Let U be an open convex sct in L ~»nd let f: U ~» EQ be s.t,

fe Cl(U) and f'"'(x) (e M2(L b4 L,fp_)) exists ¥ x € U, Then,
f is convex on U <===> f"(x) is non-negative definite ¥ x ¢ U

(strict convexity <===> positive definite).

Proof: [ <=== ] Syjpose f"(x) is n.n.d. ¥ x e U, Let x e Ube arbitrarv.
By Taylor's theorem (Thecrem 4.24),

£(x,+h) = £(x ) + £'(x_)h + = £(x_+sh)(h,h) for some s & (0,1).

3_f(xo) + f'(xo)h (by hypothesis).

Appeal to theorem 4,25 says that f is convex.

{+=:==>] Suppose f is convex. Fix xe U end he L arbitrariiy
and define a function g : ﬂz > QQ by

g(t) = f(x + th)
Observe that g(t) is convex in some neighbourhood of 0. Now, by composition

rule for differentiation

it

g'(t) = £'(x + th)h

it

g"(t) = f"(x+th) (h,h)
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For convex functions g(t) of one real variable we know that g"(t) > 0
in its domain. So, in particular,

g"(0) = (%) (h,h) >0

Since x and h are arbitrary, the proof is complcte. (For strict convexity
all inequalities are to be replaced by strict inequality).
’

Q.E.D.

The following is the support characterisation of the convex

functions.

[
n

Theorem 4.31. Let U be an open subset of L and £ : U = “2 . Then, ©

convex on U <===> f has support at each x ¢ .
Proof: [ <=z== ]: Let %,y € U and for w ¢ (0,1), Let X, = ox + {1-a) v.
Let a(x) = f(xo) + T(x-xé) be the affine function that support f at x_,

e
where T is\linear functicnal. Then
i’

e

£(x ) = £loax + (1-a)y) = A(x)) = aA(x) + (1-a)A(y)

I A

af (%) + (1-a) f(y)

1}
H
H
v

f is convex on U.
[ <=== J}: Left as an exercisa tc the reader.

Exercise 4,32: Let f be convex on an open subsat U of L and at x e U,

f'(xo) exists then f has the unique support at ¥ given by A(x) = f(xo)+f'(xo)
(X"'XO) .

Exercise 4,33: In the previous exercise if L = ﬂ%n, then f has unique suppcrt

at X <===> f is (Fréchet) differentiable at X

Sc exercises 4.32 and 4.33 give 4 necessary and sufficient
condition for Fréchet differentiability of & ccnvex function on an and the
following exercise ensures the Frechet differentiability a.e.

Exercise 4.,34: Let £ : U ~»> ﬁz be convex on an cpen set U dn ’Rz?. Then

f is (Fréchet) differentiable’a.c x in U.
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We conclude this iccture by giving some more differential
propertics of .convex functions in terms of directional derivatives. An
important property of COUVEX functicns is the existence of directicnal

derivatives at all points of their effective domains,

Theorem 4,35: Let f be convex on an open subset U of L. Then the following

are tirue.
(1) ¥xeU, vel, f;(x;v) exists
1 H = - 1 ~ -
(ii) ¥ XyX € U, £(x) f(xo) 3_f+(xo, X xo)
(iii) £r1ixyv) j_f;(x;v)
(iv) f;(x;v) is positively homogeneous sub-additive function in v, i.c.

f;(x; Av) =~Afi(x;wv)‘mv,nkﬁk 0, v ¢ L and
£L05 vyt S ELGkgvy) + £(xg Vo).
Proof: L[i) Let us prove first when L =‘ﬁe >;-Let tl < t2 <t_. .7 t, and %

are in dom f. Since f is convex,

t,- -t t2-t
f(tz) < T f(tl) + g £f(t.)
3 1 3 1

From WhiCh, o R _7 . i

'y _ B}
f(t2)~f(tl) ————I—(f(ts) -‘f(tl)) and

£(tg)-£(t,) > 3 BN (£(t)-£(t;))
Y
Combining,
f(t2)—f(tl) ) f(ts) - f(tl) ) f(te)-f(tg)
t2~tl - ta-tl e ts—tQ

This implies, ¥ t = dom £,

f(t+r) - £(t)
A
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is decreasing as A decrcases (if tzright end point of dom f, then this

quoctent is identically equal tuss Wer.t.A > 0). gea f;(t)=f;(t,l) =

lim f&ﬁiﬂ%:ﬁ&ii.v t € dom f. For general space L, define for x ¢ dom f and

A¥0
yelL,

o(t)

Note that ¢l(0) = f;(x;y). Existence is provided by previous step.

Hence (i) is proved.

(ii) By definition
f;(xo, x-xo) = lim ~-f(xo * A(x—xo)) - f(xo)
AY0 A
f(A x +(1-2)x ) - £f(x)
. o o
= l1lim Y
A% 0
. Af(x) - Af(x)
< lim o) - .
148 5 = f(x) - f(xo). Hence (ii).
(iii) is immediate.
(iv) positive homogeneity is trivial tc varify. For sub-additivity;

£1(x,y+2) = lim £x+(A/2)(y+z)) - £(x)

AYO A/2
fO(x+Ay) + X + Az) - f(x)
= 1im - 2 2
A0 A/2

< lim  _f£(x + Ay) - £(x) + f(x + Az) - £(=)
A+0 A

= f;(x,y) + f;(x,z) Hence (iv).

Q.E.D.



LECTURE 5

Sub-differential Theory of Convex Functiems

5.9 Introduction:

In different applications‘w§’sce that supporting hyperplanes
to convex sets can be employed in situations where tamegent hyperplanes.
in the sense of the classical theory of smooth surfaces, do not cxist.
Similarly, sub~gradients of convex functions, which correspond te supporting

hyperplanes to epigraphs rather than tangent hyperplanes to graph, are

often useful where ordinary gradients do not exist.

.The theory of sub—differentiation of convex functions is =
fundamental toolS'in'thé"analYéiévof extremum problems, For some elementary
applications, sece next lecture.

Notations
L : z topological vector space:

L*: dual space of k; i.e. the set of a¥l continudus linear
functionals.

<R,x¥> = xk(z), x* ¢ L¥, x ¢ L.

Definition 5.1: Let ¥ : L +}R‘U {=} be a2 proper convex function. A

subgradient of £ at %, € L is an x* ¢ L*® s.t.

f(y) z_f(xo) TO<y=R s xg> ¥yel.
This says that f(xo) is finite and that the graph of the affine function
A(y) = f(xo) to<y-x_, x§> is a 'mon-vertical' supporting hyperplane at
(xo,féxo)). Or, in otherwords, A(y) is a support of f at X e Figure below

may Belp to visualise it:



32 :

it
/ ! \

N
? N\

4\

X
Q

figure 5.1

Definition 5.2: Let 9f(x) = {x%e L* : x* is a subgradient of f at x & L} .

If 3f(x) # ¢ then Ff is said to be sub-differentiable at x.

The csub-differential of f is the multivalued mapping (i.z.,
a relation) which assigns the set 3f(x) to each x. i.e. .3f: L -~ L% is

a multiple valued mapping. We shall call this mapping as subdiffevential

(cr subgradient) operator of f.

Definition 5.3: If the above subgradient cperator is single valued then

it will be calied the gradient operator of f and 23f(x) will be called the

gradient of f at x.

Remark 5.4: (1) If L is a Banach space, then the notion of gradient is
equivalent to that of the Fréchet derivative.

(2) Note that 8f(x) is weok® - closed convex set in L%,

Remark 5,5: The sub-differential at x is also sometimes called general

differential at x. The advantage of the present treatment is that L need

not be a Banach space, and f need not be Fréchet differentia’. E.g.
f(x) = {x|] , . = is convex but not Fuoch:t. differentiable in many

of the Banach spaces,
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We shall investigate here the following prcblems:
(L) When‘?ﬁf(x) exists, i.e. #¢ 7

(2) What is the roloticn of  3F(x) with directicnal and with Fréchet
derivatives in NLS.

(3) What are the properties of the sub-differential mapping?

Also, in this comnection, we shall ihvésfigate the prcblems cof characterisa-
tion of sub-differential mappings as some special dypes of "bimary relations"
in L x L*. Or, in otherwords, necessary and sufficient conditicns will be
sought in order that a multi-valamed mapping will be the sub-differential
mapping of a proper convex function., Uy o wtoc T i

5.2 Properties and a characterisation of the Sub-differential map .

Definition 5,.,6: A convex function f is said to be closed if for each

a € ﬂ% M oel f(F)wi.a} is closed.

The following is a geometrical investigation for convex
functions of ome reel variable. The following are sketches of three convex
functions and their sub-dffferentials (identificd zs the slopes of the

tangent lines)

. A

t + ; \\\«) 4 L
dom £ = [1,y) dom g = [1,x) dom h = [1,4)

A

: } t P :
‘ . 14 g }
- Al

I |

e = - -y e

!. Lok o : e o et ot .

dom 3f = [1,4) dom 3g = {1&) dom 3h = (1,4)
rg £=(-q 9 rg ag = (- «, 0) rg 3h = (-1,1)

Figure 5.2
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Note that f and g are closed whereas h is not. Intuitively
one can see that the propertf.of closedness of a convex function has
something to do with its behaviour at the boundary of its domain. (In fact,
a convex function f on I is closed <==> f is continuous at each end point,
where I is an interval of the veal line). About sub-differential mappings,
note that in each case -the graph of the sub-differential mappiﬁg is a
continuous incrcasing curve with verticle as well as horizontal segments.
For of and 9g, both ends of the curve recede upte infinity whereas, for
dh it is not. This phenomenon of convex functions is related to the cleosed-
ness of the functions. Tb méke‘if bossible to investigéfé‘abee types of

phenomenon applicable to more general spaces. Let us proceed as follows:

Definition 5.1+ A relation p on L x L* is said to be monotone if

<y-X, y'.'e - xR > 0

whenever x* € p(x) and y* ¢ p(y) ; and it is said to be maximal monctone
4
relation if its graph is not prorerly contained in the grapﬁ{ény other

i

monotone relaticn.

Remark 5.8: If L is a Banach space, then 9 f of cach lower semi continuous
proper convex function f on L is a monotone relation, even it is maximal.,

But not every monctone relation arises frem a :ccnvex functicn. (In this
connection, sce theorem 4.29 lecture 4). For instance, every positive definite

linear mapping p on a real Hilbert space is a (single valued) monotone

relation. But; such a mapping is the sub-diffeecntial of 2 proper convex

function if and only if it is also self adjoint. Then natural question arises:

What are the properties that characterise the relations as the sub-different-
ials of some proper convex functions? ’Or, in otherwords, for which relations

¢ , we have p = of for some proper convex function f. TQ that end,
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Definition 5.9: A relation p or L % L% is said to be monotone cf degree
n if it satisfies

N
B> <y =om oy ME> 4 ,., 4+ <X

L)
-X., $¥¥> + <X
o n’ 171

-3 X‘:-‘ >
2 o’ To

1
for every set of n+l pairs (xi,xﬁ), X, € L, x? € p(xi), Wi = 0,1l,eees 0}

p is said to be cyclically monotone if it is monotone of degree n, for all

n > 0, Note that p is monotone if and only if p is monotone of degree 1
In fact, p 1is cyclically monetone implies p is monetone whereas p is
monotone =#=>p is cyclically mcnotone unless L is an cne~-dimensional space.

This lezds one to the following open problem,

Conjecture 5,10: In the case of L = ﬁQ? each relation on L % L® which is

monotone of degree n is actually monotone of all degrees i.e, cyclically
monctone.

The fcllowi?g theorem gives the necessary and sufficient
condition for imbedding a relation into the sub-differential mapping of

some proper convex functions,

Theorem 5.11: Let L be a topological vector space, and p be a relation on

L x L¥, Then p ¢ 8i 1. stme proper convex functionAon L <===> p is
cyglically monotone,
Proof: [ ===>] part follows from the definition

[ <===7] part : w.l.g. supposec p ¥ ¢. Fix some X, € L and x? e L*

with xg € D(xo). Define, for each x € L,
H

f(x) = sup {<x=x_,x* +... + <x,~-x_, x%>
(x) P n’’n : o’ "o }

1
where x? € D(xi) for i = 1,2,...,0n, and the sup is taken over all possible

finite sets of such pairs (xi,xﬁ).
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Claim : f is proper convex with 9f =5 o . To prove this first note, that

<X-Xn, Xg> + eee + <X -xo,xi> is an affine function in x for all such

1
finite pairs, so f(x) > -» ¥ x ¢ L. To show that £ is not identically
equal to <, note that p is cyclical ===> f(xo) < 0. In fact, f(xo) = 0,

Convexity of f follows from the sub-additivity property of 'sup' operaticn.

To show of “?p: Choose % and x* with x* ¢ (%), arbitrarily and fix it.

We want to show x* ¢ 3f(x). Given € > 0, by definition of f it follows
that there exist a finite number of pairs (xi,xﬁ) with x? £ p(xi),

¥i = 0,152,404, k S,t.

<X - %o XE> 4+ ... + <x

k 1

—x Lx¥> > f(R) - ¢
0’0" -
Set’xk+l = x and x®* . = x*, Then by definiticn of f, we have for each x € L,

k+1

£(x)

v

* .
>t L. b <Ko-X O HYE>
>k 1 e

L

“ram 13 -
DR W L0 o R Wt %

> + f(xk ) - .

. <z ¥e
2 = *1+1? k1l +1

Now € > 0 is arbitrary. Hence

£(x) > <x-x, x#> + £(x). So x* ¢ 3f(x).
© Q.E.D.

Corollary 5.12: If p is a maximal cyclically monotcne relation on L x L¥,

then p = 3f for some proper convex function f on L.
Proof: Trivial,

Corollary 5.13: If f. is any proper convex function on L, then there exists

1

a proper function f, on L s.t. Bfl(:; 9f, and 3f_. is a maximal cycliically

2 2 2

monotone relation.

Remark 5.14: So what we have established. is

et of all f ~» 23f
proper convex

function

set of all cyclically \
menotone relations ...

that 9of is a mapping from the set of all proper convex functicns inte the
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sct of 11l cyclically monc.one relations on L x L%, Now, the natural
questicns arise: When is such a mapping 1-1 and onto? We are nct aware

NE
of any general resuit. llowever, iprut some restrictions on the domain of

the sub~differcntial operator 9 and also on the underlying space L and
then :we can have an 1-1 and onto 3 map-summarised in the theorem below.
Let us define a relation v on the set of all l.s.c. proper convex function

by £(x) v g(x) if f(x)~g(x) = ¢, some constant. Note that ~ is an equivalence

relation. Denote by

ﬁ;;f fall l.s.c. proper convex function on L} / v

L)
e,
i

set of all cyclically maximal monotone relations on LxL¥,

Theorem 5.15: Let L be a Banach space. Then the sub~differential mapping

7Y s .
J : %'”A[Rz is an one-cne and onto map.
\ (% .

Proof: See Rockafellar (1970) for the corrected version of his previous

precof supeared in Pac, J. Math (1966),

Remark 5.16: What asbout algebraic and topological properties of the
operator 9 7 Some are discussed in the later sections. But, one should

investigate for more peossibilities,

5.3 Sub-gradients and Directional Derivatives:

Set of conjugate functions are some sort of dual space to the
space of convex functions,

Definition 5.17: The conjugate to or Young ~ Fehchef transform cf f on L is

the function f* on L* defined by, for each x%* ¢ L%

Fr(x%) = sup {<x, x* - £f(x) : x e L} -



Example 5,18: Let A(¢C L and f(x) = 8(x|A), the indicator function of A.

iced, 8(x]A)

0 ifxe A

"

o if x e A
Then
duf
Fé(x%*) = sup {<x,x*> : x ¢ A} = s(x*|A), called the

support function of the set A.

Exercise 5.19: Let A be a convex subset of L and let uA(x) be the
Minkowski functicnel of the set A defined by

uA(x) =0 ifx=0

inf {a > O™l x € A} if x # O.
Show that f£#(x®) = é(x*lAO), where A° is the polar of the set A defined by

A% = {x% e L¥ : s(x*|a) <1} .
where s(x%*|A) is the support function of the set A as defined in the
previous example,

We do not have cncocugh spaée here to pfesent many facets of
the conjugate function of a function. However, we shall state an important
theorem about conjugate functions.without preof. Interested readers should
refer to A.D.Loffc and . Tihomirov (1961), 171-180, Let f£¥%¥% = (5’?“)*9 called
second conjugate of £,

Theorem 5.20: = (Fenchel -~ MoreaW Theorem): Let f be a function on L and

F(X) > -2 ¥ xe L, Then f = f%% <===> f is closed and convex.

Proof: See A.Loffe and V.Tihomirov (1961) pp. 175.

Theorem 5.,21: Let C% ¢Z L* be a weak® -closed convex set. Let, ¥y ¢ L,

o(C¥*,y) = sup {<y,x* : x% ¢ &#} , the support function of ¢# on L.
Then o(:&,y) is a positively homogeneous l.s.c. proper convex function on L
(By positively homogeneous, we mean 6(C:%,Ay) = A o(c®*,y) ¥ A > C =nd y ¢ L)

Proof: Left as an exercise to the recader.
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The following thecrem gives the different relationships among
some of the concepts we have already introduced; in particular, relationship

between directional derivatives and generalised derivatives.

Theorem 5,.22: Let x € dom £ and x% ¢ L%, Then

(1) x* g 3f(x) <===> f:(xgy) > <y,x¥> Yy e L,
(ii) fl(x;y) > o(3f(x),y) ¥y e L and x € L s.t. 3f(x) # ¢
(iidi) o(3f(x),y) = 1lim inf f;(x;z) ¥x € L when of(x) # ¢.

z >y

Proof: (i) x* e 3f(x) <===> f(y) - f(x) > <y-x, X% ¥y ¢ L

<z=z==> f(X‘PAZi = f(x) > <Z,X"‘;"> ¥z ¢ L and /\'} >0

obtained by setting y = x + Az,

lim _f(x#iz) - f(x)
A40 A

> <z,x%> Yz e L

(ii) follows from (i)

(iii) using the theory of conjugate =-functions, it can be proved. It is
avoided here,.

The foliowing thecrew 5,24 gives the limiting relationship between

approximate subgradients and directional derivatives.

Definition 5.23: For given € > 0, we define an approximate subgradient

relation by

9 _f(x) = {x* e L¥ : £(y) > £f(x) -e + <y-z, x*> ¥y e L} .
Note that aé;.x, is a weak¥®-closed convex subset of L% for every ¢ > 0;
and Béf(x) v O¥f(x) as € 4,0,

Theorem 5.24: Let f be a l.s.c. proper convex function on L and let

X € dom £, Then

g(aE f(x), y) + f;(x;y) as e+ 0 ¥ye L.
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Proof: Let Cg = {x% e L% : £%(x%) - <x,x%> < B} where f¥* is the conjugate

function of f and B be such that

0 > G > inf {:{:’f{'(x*) - <X’X7?€> X* € L:'f}' > -0 s

be = nonempty weak*-closed convex set in L*. Then the support function

of C* is

f(x + dy) +8

o(C%,y) = inf 3

A> 0
Now, by the definition cof Bef and f%, it follows that

(See Rockafellar (8)).

x%* e Bef(x) <zzz> f(x) -g = <x,x*> < inf {f(y)- <y,x*> | y ¢ L} = =FE ()
8¢t B8 = & -f(x) then note that CE = agf(x), since

f(x) = sup { <x,x%> - £*(x*) : x* e L*} .
Hence,

o( 3 £f(x), y) = inf f(x+ Ay) - £f(r) + ¢
€ A0 X

flz+dy) - £(x)
A

Now, the facts

¥ as X ¢+ 0 and above is true for 211
€ > 0 imply that

( - 0y
a( aef(x),y) + inf f\x+hy)} fx) . f;(x,y)

A>0

Q.E.D
The following theorem reveals scme of the duality Features of f and f#*

in connection with the generalised derivatives.

Theorem 5.25: Let f be a closed convex function on L. Then the following

are equivalent:

(1) x% g 0 £(x)
(ii) x €& of%(x¥%)
(iidi) F(x) + £5(x%) = <x,x%

and similarly, -the following are also equivalent



(i) x%* ¢ aef(x)
(ii'") X € Bef*(x*)

(iii') f(x) + Ff#(x*) < <x,x% + ¢

Proof: (i) <===> (ii) follows from the fact that £%% = f which, in turn,

is followed by Fenchel-poreau theorem (Theorem 5.28). Now we shall show that

[ (i) ===> (iii)]: Let x* ¢ 3f(x). Then by definition of
sub-gradient, we have

fy) > £(x) + <y-x, x*> ¥y ¢ L
i.e. <y,x¥> - £(y) < <x,x%*> - f(x) Wy e L.
So f*(x%) = sup { <y,x®*> - f(y): y € L} < <x,x%> -f(x)
i.e. £(x) + FA(xk) < <x,x*> .
On the otherhand, £%(x*) = =sup {<x,x¥*> - f(x)| x ¢ L}

> <x,x%> - f(x).

These two inequalities give (iii).

[(iii) ===> (ii)]: Suppose £*(x*) + f(x) = <x,x%> ,
Now, since, F(xt ez) > <xt ez,x¥> - f%(x*), we have

Futer) - £{x} , Sxtez, x%> - FE(x?)-f(x) _ <ez,.x%>
€ et € - €

= <ZBX"‘°>
¥ € >0 and z ¢ L.
Hence fl(x;z) > <z,&%> ==z==> x% ¢ 3f(x) by Theorem 5.22(i).
Q.E.D.
Now we shall statc a few thecrems without proof. The procfs can be found
in (1945, pp. 199-204. Thesc results are about the sub-differentials of
functions - obtained after some operations on some initial conves functicns -

-  interms of the sub-differentials of the original functions.
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5.4 Exisience of sub-differentials

The following thecrems give the conditions on the functicms so

that their sub-differentials exist.

Theorem 5.29: A proper convex function £ is sub-differentiable ot = peint

% € dom f <===> f;(x,z) is l.s.c. at z = 0.

Proof: See (19b), pp. 198-189.

Theorem 5,30} If f: L + R U {=} is a proper convex function and it is

continuous at X then af(xo) # o

Proof: It is a corollary tc a general theorem due to Minty, Sce (143, pp.oud,
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