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Continuity of preferences imposes behavioral restrictions on the preferences such 
as impatience or myopia. This paper extends the notions of myopia due to Brown 
and Lewis, and their characterization of the Mackey topology in terms of myopia, 
from 100 to L,w Then this characterization of the Mackey topology on L00 is used to 
extend Araujo's theorem on the necessity of impatience for the existence of com­
petitive equilibrium from 100 to L00• Journal of Economic Literature Classification 
Numbers 021, 022. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

The concept of myopia has a long history in the literature of inter-tem­
poral economics. Inter-temporal myopia has long been used in capital 
theory under the name of impatience or discounting. Koopmans [7] was 
the first to show that the topology on the sequence space, /00, imposes 
behavioral restrictions on continuous preferences. These behavioral restric­
tions he referred to as myopia or impatience. Diamond [ 4] introduced a 
notion of myopia, calling it eventual impatience, and proved that the 
product topology on /00 imposes eventual impatience on continuous 
monotonic preferences. Bewley [2] attributed to Hildenbrand the notion of 
asymptotic impatience on /00 and the observation that all Mackey con­
tinuous preferences over l oo are asymptotically impatient. Brown and Lewis 
[ 3] introduced the concepts of strong and weak myopic preferences and 
the strong (resp. weak) myopic topologies on /00• The strong (resp. weak) 
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Donald J. Brown suggested the problems and kindly supervised the essay. During my stay at 
the Indian Statistical Institute as a Junior Research Fellow, I learned the relevant 
mathematics. Conversations with T. Bewley, W. Hildenbrand, and T. N. Srinivasan were also 
helpful. An anonymous referee pointed out an embarrasing error in the statement of 
Theorem 3.5 in an earlier draft. I am grateful to all of them, especially of course to Donald J. 
Brown. However, I retain all responsibility for errors in the paper. 

358 
0022-0531/86 $3.00 
Copyright © 1986 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



MYOPIC TOPO LOGIES 359 

myopic topologies are such that all continuous preferences are strongly 
(resp. weakly) myopic. They showed that Hildenbrand's observation about 
the Mackey topology on I w characterizes it in the following sense: The 
Mackey topology on I w with respect to the pairing <I w, 11) is the finest 
strongly myopic locally convex Hausdorff topology on <lw, 11) 
[3, Theorem 4a]. 

Using a characterization of myopic topologies on I oo, due to Brown and 
Lewis, Araujo [ 1] proved that the Mackey continuity of preferences is a 
necessary condition for the existence of a competitive equilibrium in I w, 
i.e., for any topology on I oo finer than the Mackey topology and coarser 
than the sup norm topology, there exists a pure exchange economy with 
two agents where the core is empty, and hence no competitive equilibrium. 

All these results are proved in I co. A unified treatment of time and uncer­
tainty, however, calls for a state space richer than the integers. This is the 
case even when time is discrete, and there are only two states of nature at 
each point of time. So the need for a generalization of the above results to 
Lw is apparent. 

In this paper I extend the notions of strong and weak myopia due to 
Brown and Lewis to L co. The characterization of a strong myopic topology 
on L00 is used to extend Araujo's necessity theorem to L00• This extension 
of Araujo's theorem together with Bewley's existence theorem supports 
Bewley's intuition that the Mackey topology is the appropriate topology 
for infinite dimensional commodity spaces. 

In Section 2, all the concepts and notation are defined. Section 3 sum­
marizes the main results of the paper. Other important observations are 
included as remarks in Section 4. Section 5 puts all the proofs together. 

2. CONCEPTS AND TERMINOLOGIES 

Let ( W, PJ, 11) be a cr-finite measure space. The set W could be viewed 
here as the set of states of nature or the set of time points or both. An event 
is a subset of W. The set of all possible events is assumed to form a a­
algebra, PJ. Let J1 be a positive cr-finite measure on ( W, PJ). 

Let Lw be the space of all 11-essentially bounded real-valued measurable 
functions on ( W, PJ, J1 ). Lw is viewed here as the space of state- and time­
contingent commodity bundles. Let L1 be the space of all integrable 
functions. 

For x and y in L1 or Lw, define � on L1 or Lw by x� y if x(w)� y(w) 
a.e. 

DEFINITION 2. 1. A preference ordering is a transitive binary relation on 
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Leo. A preference ordering � is complete if x, y in Leo implies either x � y 
or y � x, and � is monotonic if x � y a.e. implies x � y. 

DEFINITION 2.2. A real linear vector space L is called an ordered vector 
space with an order :e:; if L is partially ordered by :e:; in such a way that the 
partial ordering :e:; is compatible with the algebraic structure of L, i.e., for 
all x, y, and z in L, x :e:; y implies x + z :e:; y + z, and x � 0 implies ax� 0 for 
every real number a� 0. Let L be an ordered vector space with :e:; its 
order. A seminorm on L is a function p: L---+ IR such that p(x + y) :e:; 
p(x) + p( y ), p( tx) = It I p(x ), for all x, y in L and all t in R A locally convex 
topology is a topology generated by a family of seminorms P. A seminorm 
p is monotonic if x � y � 0 implies p(x) � p( y ). A semi norm p dominates a 
seminorm q if there exists a c > 0 such that q(x) < c p(x) for all x in L. Let 
Q be a family of monotonic seminorms. Q is said to be a base for a family 
of seminorms P if every p in P is dominated by a seminorm from Q, and Q 
is a subset of P. A topology is said to be a locally convex topology with a 
monotone base if its associated family of seminorms has a base of 
monotonic seminorms. By L +, we shall denote all x in L such that x � 0. 

DEFINITION 2.3. Let L be a topological vector space with r its topology. 
A preference ordering, �, is r-continuous if for all x in L, both { y m 

L: y � x} and { z in L: x � z} are r-closed. 

I now extend the notions of strong and weak myopia from I eo to Leo. 
Let II =  { e= { En}: { En} c&l, En !r,P}. For X in Leo, e in II, and win W, 

define 

x� (w) = (1 E.x)(w) 

and 

.X� ( w) = x( w) - x� ( w ), 

where 1 E denotes the indicator function of E. 

DEFINITION 2.4. A preference ordering � on Leo is strongly myopic if 
for all x, y, z in Leo, x >- y implies for all e in II, and for all sufficiently large 
n, x >- y + z�; and it is called weakly myopic if for all x, y, c in Leo, where c 
is a constant vector, x >- y implies for all e in II, and for all sufficiently 
large n, x >- y + c� . 

Note that when W is countable then II is a singleton set, and these con­
cepts are the same as those in Brown and Lewis. 

DEFINITION 2.5 A topology r on L00 will be called strongly myopic 
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[ resp. weakly myopic] if all r-continuous complete preference orderings on 
L00 are strongly myopic [resp. weakly myopic]. 

It is easy to note that the strong and weak myopia agree for monotone 
preferences. 

Let r 1 and r 2 be two topologies on L oo. The topology r 2 is called finer 
than r 1 if r 1 c r 2• We shall use the notation ( L, r) * to denote the 
topological dual of L under the topology r. 

We study two topologies on L00, namely r�M, 
1 

the finest strongly 
myopic locally convex Hausdorff topology with a monotone base, and 
r wM, the finest weakly myopic locally convex Hausdorff topology. The 
questions are: Do they exist? If so, what are their basic properties? 

DEFINITION 2.6. Let E and F be two vector spaces over IR. A pairing is 
an ordered pair � E, F't> together with a bilinear functional < , ) defined 
on Ex F A � E, F't> dual topology on E is a topology such that F is the 
topological dual of E. Let F be a subspace of linear functionals on E. Let 
rr(E, F) denote the weakest topology on E such that F is its topological 
dual. And also let 

J f dJ1 denote J wf dJ1. 

Let us have the pairing � L00, L1 't> with the bilinear functional defined 
for all fin L00, and gin L1 by 

<J. g) = f fg dJ1 

= Tg(f) say. 

It is well known that rr(L00, L1) is generated by the family of seminorms 

{I Tg(f)l: g in LJ}, and is a Hausdorff locally convex topology with a 
monotone base. Let rm be the Mackey topology on L00 when paired with 
L1, i.e., the topology of uniform convergence on rr(L1, Loo )-compact, con­
vex sets of L1• Since, rr(L00, Ld c rm, we note that rm is Hausdorff locally 
convex. In the proof of Lemma 5.3 we shall show that, in fact, it has a 
monotone base. 

1 Note that this is not what is studied in Brown and Lewis [3 ]; in fact, they study the finest 
strongly myopic locally convex Hausdorff topology. 
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3. STATEMENT OF THEOREMS 

I assume the measure space ( W, !!I, J1) to be u-fini te. 

COROLLARY 3.2. Let r be a locally convex Hausdorff topology on Leo and 
let r c rm, then r is strongly myopic. 

Let u denote the unit vector of L00, that is, u(w) = 1 a.e. 

THEOREM 3.3. rwM exists on L00• J is in (L00, rwM)* if and only if for all 
e in Il, J(u�)--. 0 as n--. oo. Moreover, (Leo, rwM)* + = L{. 

Denote the ll·llrtopology on L; by r;, for i = 1 ,  and oo. 

DEFINITION 3.4. A pure exchange economy on ( L co, r) 1s one which 
satisfies the following: 

(a) The preferences of the agents are r-continuous. 

(b) The initial endowment of each agent is in Leo. 
(c) The consumption set of each agent is a subset of Leo. 

Now we have the following extension of Araujo's theorem. 

THEOREM 3.5. Let u(L00, L1)crcr00• Given any rfiner than r�M' there 
exists a pure exchange economy on (L00, r) with two agents, for which the 
core is empty, hence no competitive equilibrium. 

4. SoME UsEFUL REMARKS 

Remark 4.1 . Let rsM be the finest strongly myoptc locally convex 
Hausdorff topology on Leo. r sM = r m on I co. 

Remark 4.2. Applying the last part of Theorem 3.3 and the fact 
[ 6, Theorem 23.6, p. 228] that every continuous linear functional in a 
locally convex Hausdorff topological vector space with a monotone base is 
the difference of two positive continuous linear functionals, it can be shown 
easily that if a topology r has a monotone base then r is weakly myopic if 
and only if it is strongly myopic. 

Remark 4.3. D. J. Brown pointed out that the Mackey topology on Leo 
is the finest strongly myopic locally convex Hausdorff topology in the 
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family of topologies that are coarser than the sup norm topology, roo. This 
follows easily from the proof of Theorem 3. 1. 

Remark 4.4. From Lemma 5. 1 we know that rrM c !sM• but we still do 
not knOW Whether Or not !sM C rrM. 

5. PROOFS 

I now assume that the following lemmas are true and prove Theorem 3.1. 
The lemmas will be proved later. 

LEMMA 5.1. Let r be a locally convex Hausdorff topology on L00• Then, r 

is strongly myopic if and only if for all x in L oo, and e in II, x� --+ 0 as 
n--+ oo. 

LEMMA 5.2. rrM exists on Loo 0 

LEMMA 5.4. rrM c r 00 0 

LEMMA 5.5. (Loo, rrM)* = LI. 

Proof of Theorem 3.1. Lemma 5.2 asserts that rrM exists. By Lemma 5.5 
we have, (L00, rrM)* = L1• But rm is the finest locally convex Hausdorff 
topology with a monotone base on L00 such that L1 is its topological dual. 
Hence rrM c 'm· But by Lemma 5.3, Lm c r� . Thus rrM = 'm· Q.E.D. 

Now I prove the lemmas. Lemmas 5.1 and 5.4 are needed to prove Lem­
mas 5.2 and 5.5, respectively. 

Proof of Lemma 5.1. The same argument as in [3, Lemma lb] holds. 

Proof of Lemma 5.2. Let Q be the family of seminorms on L00 such that 
q is in Q if and only if q is monotonic and for all e in II and x in L00, 
q(x�)--+ 0 as n--+ oo. Let P be the set of all seminorms on L00 each of which 
is dominated by a member of Q. Note that P contains the family of 
seminorms of pointwise convergence on L00, which separates points of L00• 
Hence P generates a Hausdorff locally convex topology on Loo. By 
Lemma 5.1, it is strongly myopic. That it is the finest follows from the 
definition of P. Q.E.D. 

Proof of Lemma 5.3. Note that a typical seminorm of rm is given by 
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where C is a (J(L1, LaJ-compact, convex subset of L1• We want to show 
that Pc is a seminorm of r�M. Fix x in La:, and e in II arbitrarily. Note 
that, 

pc(x�) = sup {I I 1 En xy d,u l : y in C} 
= sup { I I 1 Eng d,u I: gin C*} , 

where C* = { xy: y in C} . Now note that the linear operator, T: L1-+ L1 
defined by, Ty = xy, is (J(L1, Leo )-continuous, for let p' be a seminorm of 
(J(L1,L00). Thenp' is given by, 

Now, 

p'(y) =  I I yzd,u l , 
= p�(y) say. 

p� ( Ty) = I I Tyz d,u I 
= I I xyz d,u l 
= I I y(xz)d.u l 

for some z in L00• 

since xz is in Loo. 

Hence T is (J(L1, L00 )-continuous (see [8, Theorem V.2, p. 129] ). Thus 
C* = T[C] , the image of C under T, is (J(L1, L a:,)-compact. Hence by 
Dunford and Schwartz [5, Theorem 1, p. 430], C* is weakly sequentially 
compact. Again by Dunford and Schwartz [5, Theorem 9, p. 292], 

as n-+ oo, 

for all x in L00, e in II, and for all (J(L1, L00 )-compact, convex subset C of 
L1• Also note that Pc is a monotonic seminorm. Hence Pc is a seminorm 
defining r�M· Q.E.D. 

Proof of Lemma 5.4. 2 Let p be a seminorm of r�M. I first assume that p is 

2 A discussion with Norman Wildberger was useful in proving this. 
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monotonic, and prove that there exists a c > 0 such that p(x) � c for all x in 
L00 with llxiL>O = 1. If possible, suppose p(x)>c for all c>O. Then for all 
m > 0, there exists xm in L00, llxmll oo = 1 such that p(xm) > m. Now by 
definition of p, for each e in ll, p(x;:")-+ p(xm) > m. Hence there exists a 
k(m, e)>O such that p(.X'f«"m.e))>m. Now let u be the unit vector of L00, 
that is, u(w) = 1 for all w in W. Note that for all m > 0, llxmll oo = 1 implies 
that 1 xml � 1 a.e., which implies that for all m > 0, xm � u a.e. Now note 
that uk(

m
,e) � u implies that i';«"m.el � ulc(

m
,el � u. This in turn implies that 

m <p(.X'f«"m.el) �p(ulc(
m

.e)) �p(u), since p is monotonic. This implies, 
p(u) > m for all m > 0. This is a contradiction to the fact that p is real 
valued. As all other seminorms of riit are dominated by monotonic 
seminorms of riit, the above fact is true for all seminorms of ri;1M. Thus all 
ri;1M-continuous seminorms are roo -continuous. Q.E.D. 

Proof of Lemma 5.5. I first prove that (L00, ri;1M)* c L1• It is well 
known that (Loo, roo)* = ba( W, !JI, 11 ), the set of all bounded finitely 
additive set functions on ( W, !JI), which are absolutely continuous with 
respect to fl. Let J be in ( L oo, r i;1M) *. Then by Lemma 5.4 above J is in 
(L00,r00)*. So, there exists an 11 in ba(W,!JI,fl) such that J(x)=fxd11. 
Now we prove that 11 is countably additive. For, let {An} c!JI, and {An} 
decreases to empty set. We have to show that 17(An)-+ 0 as n-+ oo. In fact, 
by ri;1M-continuity of J, we have J(lAJ-+ 0 as n-+ oo. Hence 17(An) = 
J(An)-+ 0 as n-+ oo. So 11 is countably additive. Thus by the 
Radon-Nikodym theorem, there exists a y in L1 such that J(x) = f xy dfl. 
Hence J is in L1• 

I now prove that L1 c (L00, riit)*. Let f be in L1• Denote the 
corresponding induced linear functional on Loo as Tf( x)= f xfdfl. We 
want to show that Tf is ri;1M -continuous, which is equivalent to showing 
thatp(x)= I Tf(x)l is a seminorm ofri;1M. This is true indeed, for note that 
I x� fl � I xfj for all n and e, I xfl is in L1, and I x� fl -+ 0 a.e., as n-+ oo. 
Hence by Lebesgue's dominated convergence theorem, 

lim p(x�) � lim J I x� fl d11 = 0, 
n---+cJ:J n--.oo 

for all e in ll. Q.E.D. 

Proof of Theorem 3.3. The proof of the first two parts of the theorem is 
exactly the same as in [3]. I shall prove here that (L00, rwM)H =L(. 

Let f be in L(. Then note that the corresponding induced linear 
functional Tf ( x) = J xf d11 is positive, and applying Lebesgue's dominated 
convergence theorem, it is easy to show that, for all e in ll, Tf (u�)-+ 0 as 
n-+ oo. Hence by the second part of this same theorem Tf is rwM­
continuous. Now let J be in (L00, rwM)* +. Then, following the proof of 
[3, Theorem 2a], it can easily be shown that J is ll·lloo-continuous. Now 
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following the same argument as in the proof of Lemma 5.5 above we 
establish that there exists a fin L1 such that J(x) = J xf dJ1. To show that 
f?J; 0, we note that J is positive implies that J(x) ?:- 0 for all x;::. 0. Taking 
x = 1 A, A in !14, we note that J 1 Af dJ1 ?:- 0 for all A in !14. Hence f?:- 0 a.e. 
Thus f is in L( . Q.E.D. 

Proof of Theorem 3.5. I follow Araujo's argument to prove the theorem. 
Suppose r is finer than r�M· Then there exists a purely finitely additive 
measure A.> 0 on W such that A. is bounded and absolutely continuous with 
respect to Jl. Now I construct a pure exchange economy with two agents 
for which the core is empty. 

First note that there exists w in L00 such that J w dA. > 0. Let the initial 
endowments of the two agents be w1 = w2 = w, and their consumption sets 
beL!. Let the preferences of these consumers be represented by the follow­
ing utility functions: 

for x in L00, 

for some yin L(, for all x in L00 • 

It is easy to check that the above is a pure exchange economy. If possible, 
let us assume that this economy has non-empty core. Let (x�, x;) be in the 
core, where x� and x; are in L00• Now I show that udx�) = 0; but by 
assumption, u 1 ( w 1) > 0; this leads to violation of the individual rationality 
property of a core allocation, and thus to a contradiction. 

In order to prove that u dx�) = 0, appealing to the Yosida-Hewitt 
theorem (see the mathematical appendix of [2] ), and to the fact that A. is 
absolutely continuous with respect to Jl, we note that, for all n > 0, there 
exists En such that Jl(En) < 1 /n, A.(E�) = 0, En! ifJ. It is now trivial to note 
that for all n > 0, x� · 1 .e,; = 0, as A.(£�)= 0, and this is so because the con­
sumption of commodities in E� does not contribute to the utility of the first 
consumer, whereas it contributes to the second consumer's utility. Now we 
note that for any r > 0, 

So, 

{ w: I x� I > r} c { w: I x�- x'1 • 1 .e,; I > r/2} u { w: I x� · 1 d > r/2} 

= {w: lx� -x� · 1.e,;[ >r/2} 

Jl{ w: I x'11 > r} � limsup Jl(En) as n-+ oo, 

= 0. 
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Thus x� = 0 a. e. (.U ). But A. is absolutely continuous with respect to ,u. So 
x'1 = 0 a.e. (A.). Thus, by Theorem 20.d in [5], u1 (x�) = 0. Q.E.D. 
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